GENERAL ELECTRIC CO SU'NYVALE CALIF F/6 9/2

D-ADTO 960
f A SIMULATION MODELING APPROACH TO UNDERSTANDING THE SOFTWARE DE==ETC(U)
JUN 79 J A MCCALLr G Y WONGe A H STONE F'%&OOTB-C-ODM
UNCLASSIFIED AFOSR=TR=79=0776

R —

il

[

o

L B R
e I

N
O

Il

IL2s s e

|

e At

CoPY

DB FLE

e "

A7

GENERAL @D ELECTRIC

INFORMATION SYSTEMS PROGRAMS

Appa oSYNNYVALE ;. CALIFORM As 94086
ddetridbwtion unlimited.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed and is
approved for publiec release IAW AFR 190-12 (7b)-.
pDistribution is unlimited.

A. D. BLOSE
Technical Information Officer

(:)

UrhNA i has'd

$EC;,NIY;?L‘AS“:I . OF rms DA(,E (When Data Eniered)

* " |4REPUKT DOCUMENTATION PAGE BEFOKE CONPLETING PORM

v-{%b 2. GOVY ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER
AFOSRMTR- 79-077 6

| LE (and s.fbuu.) 5. TYPE OF REPORT & PERIOD COVERED

e e 4

e g £

(,', A SIMULATION)jODELIN(; APPROACH TO UNDERSTAND- (ﬂ Final y ¢ (- . '

INC THE SOFTWARE _QEVELOPMEI\T PROCESS , 6" PERFORMING OR&. REFPORT/NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

v T /McCall .Y rong/A H[Stone 1 QSR
C#; —) & [F4962 -78-c7o/554\

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
N S

Informatlon Systems Program S ‘woaKUN' \
General Electric Co / /4 :;
Sunnyvale, CA 94086 61102F ’2 E }AZ i

| So—

&

11, CONTROLLING OFFICE NAME AND ADDRESS /
N Air Force Office of Scientific Research/NM (,1 | Junﬂ79i\‘
Bolling AFB, Washington, D.C. 20332 Nt 15" ROF PAGES
96
14 MONITORING AGENCY NAME & ADDRESS(if diffe ollin Ollico} 1S. SECURITY CLASS. (of this report)

J Y O Q
/ UNCLASSIFIED

15a. DECLASSIFICATION ~OWNGRADING

SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION ST, 4ENT (of 1"+ abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY TES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Software Development Process, Computer System Simulation, Software Management,

Cost Estimation.
; i e A ¥ 1

\
20. ADTRACT (Contlnue on reverse side If necessary and Identify by block number)
his report, prepared for the Air Force Office of Scientific Research

(AFOSR), describes an assessment of the feasibility of utilizing simulation
techniques to aid in the management of large-scale software developments, A
model of the software development process was constructed, state-of-the-art
prototype simulation tools used, and an experiment conducted to demonstrate the
feasibility. A result of this effort is the concept of a Software Development
Process Simulator which could be utilized to assist in project planning (cost
estimation) and project control (progress status assessment), "

JAN 73

DD ik M73 UNCLASSIFIED

A

A SIMULATION MODELING APPROACH
TO UNDERSTANDING THE

SOFTWARE DEVELOPMENT PROCESS

J. A, McCaLL
A. H. STone
G. Y. WonG

June 1979

PREPARED FOR:

DIRECTOR, MATHEMATICAL AND INFORMATION SCIENCES
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
ATTN: NM §
BurLpinG 410, BoiLing AFB '
‘ASHINGTON,DC 20332

PREPARED BY:

" GENERAL ELECTRIC COMPANY”
> INFORMATION SYSTEMS-PROGRAMS

e
B
o 450 Persian Drive éﬂxj‘?ﬂ‘-";@\\% :
__SUNNYBALE, CALIFORNIA 9408 \ as
/97 45 |

FOREWORD

This document is the final technical report for the Software Development
Process Simulation Study, contract number F49620-78-Q:QQ§4;“ The contract
was performed in support of the Air Force Office of Scientific Research,
(AFOSR), Directorate of Mathematical and Information Science.

The report was written by G. Wong, A. Stone, and J. McCall of the Sunnyvale
Operations, Information Systems Programs, General Electric Company. The
program manager for the study was G. Walters. S. Amaral prepared the final
documentation.

Technical guidance was provided by Lt. Col. G. McKemie, AFOSR program
manager. Technical discussions were also held with R. Weber and A. Sukert,
RADC, and Maj. N. McQuage and CPT. J. Duquette, ESD.

! TABLE OF CONTENTS #
Section Page
1.0 INTRODUCTION/EXECUTIVE SUMMARY 1-1
Toll - Task - OBJeetIVAS . . . « i @ & 52 0 x oo w % @ % 1-1
Te - RADOPEE QUErVRaN - @ i s el sod o A R A 1-2
.3 Sumiry of PIDOINER - .. v = & s 5. o% n'a & & % % » 1-4
]
2.0 1, 3o (R R Ao e e A SR U 2-1
e R R O - e L L s o L 2-1
AR) A 0T R e P M SR R g 2-2
2.3 Analytic Modeling Approach . & « « « « « & « & + & 2-3
2.4 Simulation Modeling Approach 2-6
3.0 DEVELOPMENT OF SIMULATION MOBEL . . « . « o « o v o « 3-1
3.1 Orientation of the Simulation Model 3-1
3.2 Level of Model Detail . « ¢ « « v & ¢ & « o 5 & 3-1
A 3.3 Model Formulatiom .« « « 5 e s w wie @ 5 em e w v s 3-3
34 Madel ERBUES. e e e e s T e e e 3-10
U (0 s L RS e e e Y PR 3-11
4.0 DECOMPQOSITION OF THE SOFTWARE DEVELOPMENT PROCESS . . . 4-1
&b IREETEl CORCENES . v v ok W e e e s 4-1
4.2 Approach to Decomposing the Software
Development Process ¢ « « o « o % & % % % v % % w s 4-8
4.3 Descriptionof Model . . « « + « « » v v ¢ v & & & 4-13]
DR T e e W S T 4-29
5.0 DEVELOPMENT OF A SIMULATOR . . ¢ « « ¢ & ¢ o o s & » & 5-1
5.1 Prototype Design Concapts + v « « + v v v« wiv w « 5-1
5.2 Prototype Implementation 5-3
Jud PUrposSe OF EXpEriment « + ¢ ¢ ¢ o« ¢ v v ox v v s 5-9 .
5.4 Description of the Experiment 5-9

i :
. B
y

Section

6.0

7.0

TABLE OF CONTENTS (Continued)

5.5 Limitations of the Experiment
5.6 Results of the Experiment . . . - . . . ¢« + ¢ « o « »

it SRR T e | SRS s T ENET SO
6.1 Summary of Significant Results
6.2 Evaluation of Experiment . . . s « & o o « o w % & 4
6.3 Topics for Further Investigation

e R R R A LA SR

ii

! LIST OF FIGURES

Figure
Number Page
3-1 Activity Progression Model Concepts 3-4
3-2 Activity Progression Model Processes 3-5
; 3-3 Product Progression Model Concepts 3-6
;. 3-4 Product Progression Model Processes 3=7
' 3-5 Combined Activity/Product Progression Model 3-8
E. 4-1 Traditional Software Development Process Model 4-2
5 4-2 Current Cost Estimation Technique's Depiction
% Software Development Process . . . « « « « « v « « « « . 4-5
g: 4-3 Software Development Process With Feedback Paths 4-6
f 4-4 Timeline Representation of Software
i Development Process S e s o 4-7
4-5 Software Development Process Concept 4-9
; : 4-6 Software Development Process Model o v w e B=14
; 4-7 Activity Modal COnCEpt J. < '« o .« v 5 womou ks ow 8wl e 4-27
5-1 Prototype/Tools Relationship 5-3
5-2 Path Expression Parser/Interpreter Overview 5-4
5-3 Backus-Naur-Form for Path Expression Language s 9=
5-4 Path Expression Language Example 5-8
5-5 Incremental Subsytem Development vow v 5=1]
5-6 Process FIoW o w' o v o v w9 5 3 o ey i G B 1A e, Nt . . 5-13
5-7 Path EXPression « . o «.v v v v 3% o s AP s i me
5-8 Exparimgnt RESBILS . v o o 0N s e @ v e e ke W 5-17
1
19

Table
Number

3-1
3-2
4-1
4-2
4-3
3-4
4-5
6-1

LIST OF TABLES

Page
Anticipated Model Inputs . « « « « & & « 5 « o o & s & s 3-10
Anticipatod Modet DULDUREE . . « « s « ¢ 2 5 o % 5 % & » 3-11
Decomposition Methodblomr . -+ + « « s74 v « o & 58 x » 4-11
RErIvity Explapabions . ./ v il e e e v e s 4-15
FerSonnel RESOUNCEE v, . @iy o abs s e s e e wOw 4-23
Factors Which Affect Activities . . . « ¢« « ¢« ¢ ¢ ¢ 4« & 4-26
Utility of the Software Development Process Simulator . 4-30
CONGIUSTONS MBEPTHE . L 05 @ v e v 48 ms 5 6 4 s o & w 6-1

iv

SECTION 1
EXECUTIVE SUMMARY

1.1 TASK OBJECTIVES
Significant progress has been made during the last few years in identifying

the problems and complexities involved with the development of software
systems and providing techniques to overcome these obstacles. Several

major conferences and workshops in recent years highlight the work that

has been done in the research community ([NATO 69], [PROC 73], [FIND 75],
[PROC 75]; see Bibliography,Section?). What has evolved is a more disci-
plined environment for the production of software. Formal specification,
design, and implementation methodologies are being developed. More mile-
stones and visible software products during the development phase have been
identified. Software support tools have become more sophisticated in
providing assistance in the design and development of software. Considerable
error and cost data have been collected and a better understanding of the
software development environment is evolving. Cost, productivity, and
reliability studies add to this understanding and provide data for predic-
tion and estimation. The factors in software quality and associated metrics
are being studied to obtain more quantitative measurements of the quality

of a software product. Demonstration projects are being undertaken to

prove the effectiveness of new techniques.

A1l of these R&D efforts contribute to a more disciplined and structured
development process. This discipline and structure lends itself to more
effective management. Most of the tools and techniques that have resulted
from these R&D efforts support micro-level activities within the software
development process. Few assist in the management of the entire process.
The goal of this proposed effort is to address this void.

A potential management tool, made possible by the more disciplined
approaches taken to software development, is a simulation model of the

development process. Simulation mndels traditionally hav2 been used by

management for analyses such as system design studies, tradeoff analyses,
performance assessments, and impact analyses. A model of the software
development process would facilitate these same types of analyses of the
development effort itself. The analyses supported by such a tool would
span both management planning (cost estimation) and control (progress and
impact assessment).

The initial step toward developing a simulation tool to aid in the manage-
ment of a software development involves developing the concept of such a
tool and assessing the feasibility of using simulation techniques to con-
struct a model of the software develeopment process. This report describes
the results of this initial step. Specifically, under contract number
F-49620-78-C-0054, sponsored by the Air Force QOffice of Scientific Research,
the objectivesof this study were to:

1) Determine the feasibility of applying simulation techniques to
modelling the software development process.

2) Describe the software development process in a manner conducive
to developing a simulation model.

3) Provide insights into modelling specific aspects of the software
development process.

4) Discuss the potential benefits and use of such a model.

1.2 REPORT QVERVIEW
This report describes the research conducted to accomplish the objectives
described above. The report is organized as follows:

Section 1 describes the task objectives, provides an cutline of the report,
and summarizes the findings of the research task.

Section 2 provides a brief introduction to cost estimation techniques,

presents current analytic models, and compares the analytic approaches to
a simulation approach. This section provides the motivation for assessing

the feasibility of simulation techniques.

Section 3 expands upon the simulation approach to modelling the software
development process. The orientation of the model is discussed and its
anticipated inputs and outputs. Also, in this section our conceptual
approaches to modelling the software dev2lopment process are described
including how the level of detail at which to model is determined.

Section 4 contains the model description. the decomposition of the soft-
ware development process into activities, products, and influencing
parameters 1is presented. Qur specific concepts of modelling the activi-
ties and the utility of the model are also described.

Section 5 provides a demonstration of some of our concepts. A simplified
model of a software development is constructed and simulated using some
prototype simulation tools. The simplified model was constructed to
represent a past Air Force development and the simulated results are
compared to the actual results. The design concepts of the simulation

tools are described, as well as the details of the demonstration experiments.

Section 6 provides detailed conclusions of the research study and an
identification of follow-on research that should be conducted.

Section 7 provides an extensive list of references used in the study. The
references have been organized according to the following categories:

Cost Estimation

Software Project Management
Simulation

Others

1-3

1.3 SUMMARY OF FINDINGS

The basic findings of the study are as follows:

Simulation techniques can be utilized and provide very beneficial
insights into understanding and managing the software development
process. The major advantages of a simulation model over analytic
models are: (1) it provides better visibility/understanding because
it is more detailed and models the actual processes being performed
and, (2) it is more flexible, allowing the model to be tailored to
the specific development. The simulation modelling approach is
still dependent on data collection as analytic techniques have
been. One advantage, with respect to data collection, is that the
simulation model allows you to test your assumptions about what

is going on in the development, whereas analytic models do not
provide that degree of visibility into the process and, therefore,
rely strictly on past data.

The level of detail at which the model is developed is critical to
its effectiveness. We decided to model at a team-level to avoid
the great variances found in individuals' performances. One of the
biggest problems in past modelling and cost estimation techniques
is the inattention paid to the products produced during develop-
ments and their quality. A software development in which Tittle
effort is spent during design (and, therefore, has a poor design)
will have much more effort spent during implementation and test.
These interphase dependencies were identified and could not be
accurately modelled by regression techniques in a study for the
Electronic Systems Division [GRAV 76]. Our approach to including
quality considerations in the model and utilizing these considera-
tions to impact the effort required to perform certain activities
is an attempt to model phenomenon. The activity progression and
product progression model concepts are presented in Section 3.

The description of a detailed Software Development Process Model
provides immediate benefit to managers, as well as, establishing

1-4

a framework for simulations. It is possible to orient the
simulation model to support both planning and control functions

of management. The simulation approach is more supportive of both
phases that the analytic apprcach because it represents the soft-
ware development process in more detail. The development process
was decomposed into 51 generic activities. Subsets of these acti-
vities can be selected and interconnected to represent any specific
development effort. The activities described are generally those
activities performed by the development organization. Formal
contractor reviews are also identified. Extension of the model to
include other acquisition office activities ([GORD 78], [CO0SG 78])
would require simply adding activity models representing these
activities.

e The prototype simulation tools which support this process of
selecting and interconnecting the activities are described and
demonstrated in Section 5. A concept of using path expressions to
accomplish this was developed during this research project. The
prototype simulation tools identified solve user interface, effi-
ciency, and process modelling problems normally associated with
traditional simulations.

The concepts that evolved during the study, and the very good results
of the simulation experiment provide the necessary support to assess
that simulating the software development process is feasible and con-
siderable worthwhile information can be gained from this approach. In
the experiment, a past development was modelled and the simulated
results were within 4.98% of the actual results.

Further work is necessary, since this was a feasibility study. Develop-
ment of the simulator and experimentation have been proposed in an
overall research plan. The prototype tools developed during this study
provide an excellent starting point for the development of the simulator.
However, further work is also necessary on the model itself. Data

collection and further analysis are required to develop models of all
. of the activities identified. Section 6 describes what further research
is required.

1-6

SECTION 2
INTRODUCTION

2.1 BACKGROUND

The software development process is the subject of increasing research
and study. The motivating force behind the widespread interest in
software engineering is the high cost of software, the fact that more
applications are being computerized, and the greater complexity of the
software systems being constructed. There are basically two areas of
research of the software development process. On the one hand, there is
interest in better ways of developing quality software. This is the goal
of the "structured revolution" in software development, which has affected
all phases of the software development process -- from analysis to speci-
fication, to design, to programming, to test. New software development
methodologies have emerged in recent years which emphasize (1) the use of
software tools, including automated tools to support software development,
and also modularized software functions upon which more complex software
functions can be built; (2) the use of techniques which reduce software
complexity, including the reduction of control flow complexity through
structured programming; and, (3) the use of better techniques for docu-
menting system and software design, including the use of graphical and
hierarchical means for presenting control and data flow.

On the other hand, there is interest in better ways of managing software
developments so that resource and schedule requirements are estimated
more accurately, more efficient project organizations are instituted,
and project progress is evaluated more accurately. The software deve-
Topment manager is concerned with project planning and analysis, with
respect to software cost and schedule estimation, and he is concerned
with project management and control, with respect to project status
evaluation and problem identification. The management of a software
development project is an extremely difficult job because of the

2-1

- . S

{
|
{
|
|

continuous influx of new software development methodologies, the scarcity 1
of historical software cost and schedule information, and the lack of

reliable tools to support the planning/analysis and management/control

tasks.

? The software developmert process is a people-intensive process. Thus, the
i research in software development methodologies is concerned with making

: people more productive at developing software, in terms of increasing

' the rate of software development and decreasing the occurrence of errors.
Similarly, the research in software management methodologies is concerned
with making the overall project team more productive and efficient by

more accurately anticipating project personnel requirements, and more
reliably selecting the best project team organization. 1

The objective of our research is to formulate a model of the software
development process that can be used by the software development
researcher, or by the software development manager. The software

development researcher will use the model to evaluate the impact that
changes in software development methodology will have on personnel |
productivity. The software development manager will use the model to E
predict the cost and schedule characteristics of a software development

project, and to evaluate the impact that alternative project organiza-

tion strategies will have on overall project team productivity and

efficiency.

2.2 ON MODELS

A model is a representation of a system which gathers together in one
place our understanding of the behavior of that system. The purpose

of developing a model of a system is to have a vehicle for predicting
the behavior of the system under various conditions. The adequacy of
the model is normally determined by five criteria: (1) applicability --
does the model answer the questions that we want to ask?; (2) confidence

-- is the model sufficiently accurate for our purposes?{ (3) complete-

ness -- is the model broad enough to encompass all pnenomena of interest?;
(4) minimality -- have system states that are unnecessarily discriminated

been combined? and; (5) independence -- have system states that involve
interacting factors been decomposed into multiple states?

The software development process has been modeled by researchers in

software engineering primarily for the purpose of predicting the life
cycle costs associated with developing computer software. The models

that have been developed are macroscopic models which use analytic

techniques to represent the behavior of a software development. We will
now consider the merits and shortcomings of these modeling approaches,

and explore an alternative approach using simulation techniques. The
next section describes the characteristics of the software development
process which make it difficult to model, and identifies the analytic

modeling approaches that have been utilized in the past. The final
section in this chapter discusses how a simulation modeling approach
can be applied to modeling software developments. In both sections, the

five criteria for determining the adequacy of a model will be applied.

2.3 ANALYTIC MODELING APPROACH

The software development process can be viewed as a black box process
which transforms the user's needs and desires, and the available

resources into software products and by-products.

Software
——» Products And
By-Products

User Software
Needs And ————>{ Development
Desires Process
K=
Available
Resources

A macroscopic model of this black box process can be developed by
identifying the parameters which affect the progress of the software
development, and then constructing analytic relations which can be used

2-3

to compute the software project cost from the model parameters. The

model parameters describe the software system to be developed, that is,
the characteristics of the software products and by-products, including
system type, size, and complexity. They also describe the characteristics
of the resources to be applied in developing the software system, includ-
ing number of personnel, productivity of personnel, and rate of
consumption of computer resources.

The software cost relations describe how the software cost parameters
are used to compute the various costs associated with the software
development process. These relations must be constructed empirically,
using data collected from past software developments. Examples of
analytic relations which have been used with some degree of success
are the following: (1) similar experience (C=Cx) -- where cost data

from a previous similar experience are used directly. Similarity of
projects is determined by similarity in software cost parameters;

(2) statistical (C= 1 zwiCj, where w=twj)-- where the weighted average
of cost data from a number of similar experiences is used. The magnitude
of each weight is determined by the degree of similarity in software

cost parameters; (3) constraint (C=C,) -- where the resources available
for the software development are fixed, and the level of effort is
adjusted accordingly. This is a design to cost project, where the cost
is fixed at Co; (4) unit of work (C=:£Cj) -- where the project is
subdivided into sufficiently small pieces such that each piece is
equivalent to a single task that an individual can perform over a
specified time interval. The cost that is associated with each piece

of the project is Cy; (5) quantitative (C=f(Py,P,. . . Py)) -- where
cost estimating functional relationships are empirically derived. The
arguments Pj in these functional relationships are the software cost
parameters. For example, average productivity or cost per instruction
equations use the estimated system size to generate the predicted project
cost.

g

In order for the software development manager to use a macroscopic
model, he must obtain values for the software cost parameters. First,
he must determine the characteristics of the software products and
by-products. This is in principle very difficult because the target
software system does not yet exist: Techniques for accurately estimating
the characteristics of the target software system are important because
the results of the model are not reliable if the model parameters are
inaccurate. Second, he must determine the characteristics of the
resources to be applied. This is in principle easy to do because the
software development manager can hypothesize a number of resource plan§
and use the model to assess the feasibility of each plan.

The primary advantage in taking an analytic approach to modeling the
software development process is that the resulting macroscopic models
are relatively easy to develop and use. To develop an analytic software
cost estimating relationship (CER), a set of significant software cost
parameters is first identified, and the CER is formulated using analytic
techniques such as regression analysis against a historical software
cost data base. To use an analytic software CER, values for the
significant software cost parameters are estimated and used to evaluate
the CER. In addition to convenience, analytic techniques, if auto-
mated, are normally highly efficient in terms of processing time.

Despite the convenience of the analytic modeling approach, there are
serious shortcomings that limit its usefulness. First, there is limited
visibility into thé dynamic aspects of the software development process.
Analytic models tend to be "black boxes" with only the final project
cost and schedule as the model output. Second, analytic models contri-
bute limited understanding of the internal behavior of a software
development. Analytic models tend to be "macroscopic" and do not
provide insight into the interdependencies between the various software
cost parameters. Third, analytic models provide limited decision anal-
ysis capabilities. There is little assistance provided for determining

2-5

how management and development decisions (which cannot be represented
quantitatively by a software cost parameter) will affect project cost
and schedule.

The adequacy of the analytic approach for modeling the software develop-
ment process with the objective of supporting the software engineering
researcher and the software development manager is summarized in the
following table.

Criteria Evaluation
applicability limited
confidence marginal
completeness limited
minimality excellent
independence 1imi ted

Applicability is limited because it is difficult to construct analytic
models which answer questions pertaining to the detailed progress of a
software development. Confidence is marginal because the results of
analytic models are not easily extrapolated from one software environ-
ment to another. Completeness is limited because only high level
macroscopic phenomena are represented in analytic models. Minimality
is excellent because of the macroscopic point of view, but inde-
pendence is very limited, as independent states have been combined
together.

2.4 SIMULATION MODELING APPROACH

Whereas the analytic modeling approach treats the software development
process as a black box process, the simulation modeling approach
attempts to decompose the process and understand the internal behavior
of the process. With the simulation modeling approach, we view a soft-
ware development system as a collection of interdependent elements
which act together in a collective effort to achieve the goal of
implementing computer software. These elements are primarily people,

2-6

pciriillisi. i

Ty

including analysts, designers, programmers and testers, and machines, *
including computers and terminals. The simulation view is, thus, a
microscopic view, as opposed to the macroscopic view, in the analytic
approach. Simulation modeling is the process of developing an internal
representation and a set of transformation rules which can be used to
predict the behavior of, and relationships between, the set of elements
composing the system under study The internal representation of a
software development system is described by system state variables, such
as software size and complexity, personnel productivity, and project
status and progress. The transformation rules describe the interdepen-
dence between these system state variables. These transformation rules
may be analytic - expressed in the form of functional relationships, or
they may be representational - expressed in the form of an algorithm.

Taking the simulation modeling approach basically means having a
microscopic view, and being able to express both functional and
algorithmic relationships between system state variables. There is a
significant increase in descriptive modeling capability when using the
simulation approach. In fact, all of the weaknesses associated with

the analytic approach -- limited visibility, limited understanding, and
limited decision analysis are eliminated with the simulation approach.
The modeler can describe the software development process in as much
detail as is required to answer the questions that are being investi-
gated.

Unfortunately, although simulation provides a much more powerful tool
for studying the software development process, it does not automatically
"solve" the problem. There are still a number of difficulties that

must be addressed. First, the study of che software development process
is still an empirical study. We must still collect data from actual
software developments to calibrate and validate our models. Of course,
a simulation model will provide insight into the internal behavior of

2-7

the system, and the interdependencies between system state variables.
But, we still have the burden of proof in demonstrating the accuracy

of our simulation model. Second, a simulation model of the software
development process will, no doubt be_parameterized so that it could
apply to a number of software development applications in a number of
software development environments. Thus, there is the problem of
accurately estimating the values of these parameters to be input to the
simulation mouel. This problem existed for the analytic modeler, and
it does not go away for the simulation modeler. Third, the amount of
effort required to develop a simulation model, and the amount of proces-
sing time required to execute a simulation model are substantial. In
fact, they are significantly greater than that required for an analytic
model.

We will now discuss our basic approach to using simulation modeling for
studying the software deveiopment process. In Section 4, the

details of the development of a simulation model of the software
development process will be described. In this section, we are concerned
with what are the most difficult modeling problems that will be encoun-
tered, and how the simulation model can be used to support the software
development researcher and manager.

Complexity, productivity, and quality are, by far, the most difficult
aspects of the software development process for the researcher to under-
stand and for the manager to manage. Complexity and quality are attri-
butes of the software system that is to be developed, while productivity
is an attribute of the personnel resources to be applied in the software
development. Complexity is important because, along with system size,

it gives a measure of the amount of effort required to develop the system.

The question is how to quantify system complexity, and then how to
represent it so that interdependencies with other system attributes are
modeled. Productivity is important because, with a given personnel
allocation, we can use productivity to predict project schedules. Lines

of code has traditionally been used to express programmer productivity,
but the complexity and quality attributes of the code will also affect
productivity. Quality is important because the level of quality of

an intermediate software product will affect the amount of effort

that is required in a subsequent phase of the software development.

What is needed are modeling concepts that will allow us to combine

the factors of complexity, productivity, and quality in one integrated
medel.

A simulation model of the software development process may be used for |
planning and analysis functions, or for management and control functions.
Planning and analysis functions include cost and schedule estimation,
productivity analysis, and quality analysis. These functions are
concerned with how different development and management methodologies
will affect cost/schedule, productivity, and quality. Management and
control functions include project status estimation and problem identi-
fication. These functions are concerned with how to relate project
resource consumption to project progress, and how to recognize potential
bottlenecks.

The adequacy of the simulation approach for modeling the software
development process is summarized in the foilowing table.

Criteria Evaluation
applicability excellent
confidence promising
completeness excellent
minimality excellent
independence excellent

Applicability is excellert because a simulation model can be oriented
toward studying any aspect of the software development process. Confi-
dence is promising because if the accuracy of part of the model is not
sufficient, then that part of the model can be expanded to a higher

2-9

level of detail. Completeness is excellent because of the microscopic
view that is taken with the simulation approach. Minimality and
independence are both excellent because the flexibility inherent in the
simulation approach allows system states to be combined or decomposed
at the discretion of the modeler.

SECTION 3
DEVELOPMENT OF SIMULATION MODEL

3.1 ORIENTATION OF THE SIMULATION MODEL
Our study of the software development process is motivated by thres basic

objectives. First, we wish to formulate a model of the software develop-
ment process to help us to better understand the internal behavior of the
process. All of the models that have been developed thus far are macro-
scopic models which do not provide insight regarding interdependencies .
between system parameters. We want to develop a microscopic model

which will provide the opportunity to explore the internal characteristics
of a software development, and the relationships between these character-
istics.

Second, we wish to apply simulation techniques to evaluate the validity
of our microscopic model with respect to historical software data.
Clearly, analytic techniques are not capable of producing the desired
microscopic model, so we want to adapt the relevant simulation modeling
techniques to represent the software development process on a microscopic
level.

Third, we wish to develop a simulation-based methodology for software
cost and schedule estimation. Given a validated simulation model of the
software development process wiiere the interdependencies between micro-
scopic system characteristics are represented, we want to determine the
kinds of system characteristics that should be input to the model. We
also want to determine the kinds of behavior statistics of the software
development system that should be output to the model user.

3.2 LEVEL OF MODEL DETAIL
It was decided to take a microscopic view of the software development
process in order to better understand its internal behavior. We need

3-1

to select the proper level of model detail. The proper level of detail
will depend both on what is needed to satisfy the goals of the simulation
study, and on what is Practica] to implement or collect data for. The
objects or entities that will be represented in our model are: people,
resources, and products. Let us now examine each of these entities in
more detail to determine a suitable level of modeling detail for each
entity.

People are the primary entity in our system. There are a number of .
different types of personnel that are required in a software development.
We could discriminate personnel type by job title, or by generic job
function. We have chosen the latter approach for simplicity, and because
there is no present need for the more detailed distinction. For each
generic job function, we can identify a number of activities that are
performed by a person having that job function. For example, the
activities performed by the system designer are: 1) hardware architec-
ture and configuration; 2) software architecture and decomposition;

3) system performance/reliability analysis; and, 4) system test plan.

The level of detail in the specificaiton of activities for each job
function remains to be determined. Experimentation with the model will
no doubt lead to many refinements in the model. It is anticipated that
a multi-level model will result; that is, one with varying levels of
model detail for different components of the model.

Resources are the equipment used by software development personnel in
order to perform their job function and comprise the second type of
entity in our system. Resources may include computers, computer termi-
nals, and keypunch machines. We are primarily interested in resources
that affect productivity, or contribute to delays caused by contention.
An example of a resource that affects productivity is the computer

3-2

terminal used in an interactive software development effort. The
programmer in an interactive development environment is more productive
than one in a batch development environment using keypunch machines. The
computer terminal is also an example of a resource that can cause delays
due to contention. The level of model detail in our representation of
the resources utilized in a software development is thus determined by

a simple rule: include only those resources which have a significant
impact on project progress.

Software products, both intermediate and final products, are the third
type of entity in our system. A software product can be a document, for
example, a system requirements specification, or it can be a piece of
code, for example, a computer program or subprogram. Software products
provide a measure of the progress of a software development in the same
way that the utilization of personnel and non-personnel resources is a
measure of project progress. The identification of software products <
enables us to more meaningfully decompose job functions into detailed

activities. The level of detail to be used in modeling software products

. thus depends on the level of detail to which personnel activities are

modeled. If activities are modeled in more detail, then a greater number

of intermediate software products will be represented in the model.

3.3 MODEL FORMULATION

The software development process has often been described in terms of a
sequence of phases: the requirements analysis phase, the preliminary
design phase, the detailed design phase, the programming phase, and the
integration/test phase. This is a natural way of viewing the software
development process, but is of limited use because the definition of these
phases is tied to the passing of time, and not to the dynamic behavior of
the process itself. This view of the software development process is a
milestone-driven view. There are other ways of looking at the software
development process that are similar to the phase approach, but not defined
in terms of time. These are: the activity progression model, and the
product progression model.

3-3

In the activity progression model, the software development process is

represented by a mix of ongoing development activities. The activities |
can be measured by the quality, quantity, and type of development activity.

An activity is related to the amount of effort required to perform that

activity rather than the time to perform it. The types of activity are

the activities described in the previous section, the results of decomposing

the phases.

The important difference with the activity progression model is that we

can have varying mixes of activities ongoing in parallel. For example, !
during the beginning of the project, there is mostly analysis-oriented

activities going on, some design, but no programming. The quantity of

development activity is measured by the number of person hours per week

that are committed to each activity. The quality of the work that is being

performed can be related to the background and experience of the personnel

performing the activity. This can be expressed in quantitative terms by |
assigning quality ratings to various types of background, and to various |
levels of experience. These concepts are illustrated below.

SYSTEM DEVELOPMENT PROGRESS IS REPRESENTED BY THE MIX OF ONGOING
DEVELOPMENT ACTIVITY (WORK BREAKDOWN STRUCTURE MODEL):

TYPE QUANTITY. QUALITY
REQUIREMENTS ANALYSIS PERSON
DESIGN HOURS
PERSONNEL
CODE AND DEBUG BY
EXPERIENCE
TYPE OF
PERSON

Figure 3-1 Activity Progression Model Concepts 3-4

The activity progression model is closely related to the work breakdown
structure (WBS) concept. In developing a work breakdown structure for

a particular software development project, the project is decomposed into
a sequence of work packages such that the mix of activities to be
performed for each work package is well defined, and such that the
quantity of personnel resources required for each work package is easily
estimated. The activities in the activity progression model correspond
to the work packages in the WBS. There are two possible modes of opera-
tion for the activity progression model. For planning purposes, the
simulator will pick a Q value for each activity which determines the
anticipated experience of the personnel resources to be applied in that
activity. The Q value will then be transformed into the effort E
required to perform the activity. This transformation will be done by
using empirically derived rules. Based on the quantity of personnel
resources to be applied in each activity, the simulator will use the
derived effort to develop schedule and cost estimates for that activity.
For control purposes, the Q value for each activity will be estimated
based on the personnel actually being applied. The simulator will use
this data to estimate the remaining effort required, from which updated
schedule and cost predictions can be made. Figure 3-2 describes the
operation of the activity progression model.

Determine Calculate Estimate

Resource |—»| Effort E= » Cost And

Experience Q fig} Schedule
System Lystem Resource

Size Compliexity Quantity

Figure 3-2 Activity Progression Model Processes

In the product progression model, software development progress is
represented by the degree of development of system knowledge. In this
model, we view the software development process as a process of creative

3-5

knowledge synthesis. System knowledge starts out in the form of require-
ments, and evolves through design concepts to program code. The evolution
of system knowledge is constrained by technological and economic limitation

and, affected by the application of management and development methodologies.

We can measure the degree of development of system knowledge by the quality,
quantity, and type of each intermediate system product that is produced.

The type of intermediate system products will be documents or code. Examples

of system products are: system specification, preliminary design document,
detailed design document, source code, and test plan. The quantity of a
system product can be measured by the number of pages in the document and
by the number of lines of source code in the program. The quality of a
system product will be expressed by software quality metrics which rate the
quality characteristics of the document or code in quantitative terms.
These concepts are illustrated in Figure 3-3.

SYSTEM KNOWLEDGE EVOLVES IN THE FORM OF THE PROGRESSION OF
PRODUCTS DEVELOPED (PRODUCT PROGRESSION MODEL).

HEE QUANTITY QUALITY
REQUIREMENTS SPEC
DESIGN SPEC
TEST PLAN LINES OF AS
SOURCE CODE DOCUMENTATION MEASURED
OR BY
CODE METRICS

Figure 3-3 Product Progression Model Concepts

3-6

Tre product progression mudel is closely related to the concept of system
knowledge evolution. In modeling the evolution of system knowledge, the
only tangible evidence of the changing character of system knowledge is in
the intermediate system products. There are two possible modes of opera-
tion for the product progression model. For planning purposes, the
simulator will pick a Q value for each intermediate system product which
determines the anticipated quality of that system product. The Q value
will then te transformed into the effort E required to produce the system
product. This transformation will be done by using empirically derived
rules. Based on the quantity of system product to be produced, the
simulator will use the derived effort to develop schedule and cost esti-
mates for each product. For control purposes, the Q value for each system
product will be estimated based on the intermediate system products
actually produced to that period of time. The simulator will use this data
to estimate the remaining effort required, from which updated schedule and
cost predictions can be made. Figure 3-4 describes the operation of the
product progression model.

Determine Calculate stimate
Product |—>| Effort E= » Cost And
Quality Q y(Q) Sq%gdu1e
Systegr S}stem Product
Size Complexity Quantity

Figure 3-4 Product Progression Model Processes

The activity progression and product progression models are two alterna-
tive ways of looking at the software development process. With the activity
progression model, we are looking only at activities and quality character-
istics of the resources being applied, assuming that products of "standard"
quality are produced. With the product progression model, we are looking
only at system products and their quality characteristics, assuming that

3-7

personnel resources of "standard" experience are applied. In general,
we must be concerned with both the experience of the resources applied,
as well as the quality of the products produced.

Figure 3-5 describes the operation of a combined activity/product
progression model:

Determine
Resource resource
Experience RQ qufztity
+
3 . Calculate Estimate
s system size Effort E= —— | Cost and
| ystem complexity —» h(RQ,PQ) Schedule
| 1
Determine
Product gzggzggy
Quality RQ
Figure 3-5

Combined Activity/Product Progression Model

We have discussed alternative approaches to viewing the software develop- |
ment process -- as a sequence of activities performed, as a sequence of !
products produced, or both. There are two additional topics that must
be addressed as part of our model formulation. One topic is the identi-
fication of all the state variables by which the internal and external
characteristics of the software development process will be represented.
The second topic is the identification of all the analytic and
algorithmic rules by which the dynamic behavior of the software develop-
ment process will be represented. The analytic rules typically represent
| the time dependent behavior of the state variables, or the interdepend-
: encies between state variables. The algorithmic rules typically
. represent the conditions for when to apply an analytic or another
1 algorithmic rule, or when to change the nature of an analytic aor algo-
rithmic rule. Algorithmic rules also specify the time dependent
grouping of analytic or other algorithmic rules.

3-8

____________________._A-

The state variables of the model of the software development process can
be classified into three groups -- first, those variables describing the
software system to be developed; second, those variables describing the
personnel and computer resources to be applied during the project; and,
third, those variables which describe the progress of the software
development. State variables describing the software system include
system size and system complexity. State variables describing the project
resources include number and experience level of each type of personnel
resource, and number of each computer resource. State variables describ-
ing project progress include active/inactive flags for all activities

and products, and cumulative effort expended on each activity and product.
Further analysis remains to be performed to develop a more complete set

of system state variables.

The rules that represent the dynamic behavior of the software development
process include analytic as well as algorithmic rules. Analytic rules
can be used to express the effort required to perform a certain activity
or to produce a certain software product as a function of type of
activity or product, and quantity and quality of activity or product.
Analytic rules can also be used to express time and dollar costs for a
given activity or product as a function of the effort required. Algo-
rithmic rules are normally used to represent the interdependence between
activities or between products. For example, when the cumulative effort
being applied on a particular activity or product reaches a threshold,
then that activity or product is completed, and subsequent effort applies
toward the completion of the next activity or product. In our prelimi-
nary analysis we have attempted only to establish the kinds of analytic
and algorithmic rules to be included in a model of the software develop-
ment process. A more detailed and complete set of rules remains to be
established, and empirical studies need to be performed to calibrate

and validate the rules that are developed.

3-9

s

—

3.4 MODEL INPUTS

We distinguish between two categories of simulation model inputs -- the
model parameter and the model calibration values. The model parameter
values are the values of the system state variables which describe the

P TT——— T

system characteristics, the resource characteristics, and the project
characteristics. The model calibration values represent those factors
which affect the behavior of the model which are not system state

variables. Each software development environment will have its own set
of model calibration values. Each software development environment can i
be applied to developing different software systems with different .
personnel resources. The factors which affect the model calibration]
values are the management methodology, which includes how software

development teams are structured, and the development methodology, which

includes what software development tools are available for use by project
personnel. Some of the anticipated inputs are shown in Table 3-1.

‘i MODEL PARAMETERS CALIBRATION PARAMETERS

e SIZE o DEVELOPMENT MANAGEMENT PLAN
® by subsystem e methodology
e lines of source code e organization
¢ type of language o staff mix
® percent new code e milestones

o COMPLEXITY e products/quality goals

e development tools
e TYPE OF SYSTEM e perceived risk areas

o CONSTRAINTS e ENVIRONMENTAL FACTORS

® processing time
e storage size

Table 3-1
Anticipated Model Inputs

2.5 MODEL QUTPUTS

Several modes of operation are anticipated for a simulator. The usual
mode would be to provide the simulator the required schedule and the
input data identified in Table 23-1. The output would be a resource
expenditure profile and the cost. Another mode of operation would be

to input a resource profile and have the simulator provide schedule and
cost information. A third mode of operation is to provide cost data,
and allow the simulator to produce a resource profile and schedule.

The schedule and cost information could be generated for the entire soft-
ware development project, or can be generated by activity or by product.
The information that is generated can be static information, that is,
summary statistics of the values of selected system state variables,

or histograms of these state variables. On the other hand, the
information that is generated can be dynamic, that is, a trace of the
values of system state variables at each value change, or a plot of
these state variables against time as the independent variable. The
execution of the simulation model represents the behavior of the
software development process: we can make one execution and collect
statistics which indicate the model's static and dynamic characteristics.
Alternatively, we can make several executions, and compare the behavior
of each model to arrive at an optimal schedule or resource allocation
plan.

In addition to this standard output, output that supports risk and
sensitivity analyses and projections of anticipated maintenance levels
will be available. These outputs are shown in Table 3-2.

SUMMARY DETAILED
o COST e ACTIVITY PERFORMANCE
o SCHEDULE e MILESTONE PERFORMANCE
o RESQURCE EXPENDITURE ¢ RESOURCE UTILITZATION
PROFILE ¢ RESOURCE QUEUE STATISTICS
¢ RISK o DYNAMIC SIMULATION TRACE
e SENSITIVITIES

PROJECT MAINTENANCE
Table 3-2 Anticipated Model Outputs

3-11

|
|
|

SECTION 4

DECOMPOSITION OF THE
SOFTWARE DEVELOPMENT PROCESS

4.1 INITIAL CONCEPTS
The challenges of managing a software development are immense because it

is a multi-element process which is highly coupled and highly complex,
and there are wide variations in controllable and uncontrollable var-
iables between projects. In the past, the technique used by managers
has been to decompose the software development process into "independent"
subprocesses and manage those separately. This technique, generally
following the Wolverton description [WOLV 72], does not usually reflect
a very accurate model of the way software is currently being developed
or is not in enough detail to analyze the causes of poor performance
[TURN 76]. The "waterfall" diagram, (Figure 4-1), in fact, originally
was utilized to project the idea that each phase should be completed and
validated before beginning the next phase [CARR 75]. There has been
recognition in recent years that interaction occurs, and that a contin-
uous configuration management effort is required to keep the products

of each phase up to date and consistent. Thus, the traditional

widely used "model" of the software development process is outmoded, no
Tonger representing a true picture of how software is developed.

Another reason for a more detailed model of the software development
process is to assist in estimating the effort and cost of a project.
The following quotes provide the opinions of several researchers in
this field:

Estimates will improve only when the estimators achieve

greater insight and understanding of the system develop-

ment process, and the functions which make up the process,

of the interdependencies of these functions and of the

factors which influence the resource requirements of the
functions. [GEHR 76]

4-1

CONCEPT
TORMULATION

SYSIEM
REQUIREMENTS

SOFTWARE
DEVELOPMENT
PROCESS

Figure 4-

SOf TWARE
REQUIREMENT S

SOFTWARE

DESIGN

1 Traditional Software Development

Process Model

SOF IWARE
IMPLEMENTATION

1

T1EST &
EVALUATION

OPERATIONS &

MA INTENANCE

4-2

Many of the problems of resource estimating are symptoms
of an underlying ignorance of the process of program
system development for which the estimates are being made.
The serious students of estimating must first be willing
to probe deeply into the fascinating and complex software
development process; to uncover the phases and functions
of the process; to highlight the subtle interrelationships
of the program system being developed and the project
organization doing the developing.

Those who persevere, however, will recognize that examining
the influencing variables and their causal relationships

is precisely what is required if estimates are ever to be
improved. Only then can we do meaningful quantitative re-
search and scientific analysis of resource requirements.

We are never likely to eliminate unpredictable variability,
but we should be able to go a long way toward improving
predictability far above today's primitive state-of-the-art.
[PIET 7¢C]

At present, most managers focus on only one of the process

inputs -- labor -- and one of the outputs -- lines of code.

[KOLA 76]
This detail will not only assist in estimating the task, but also in
assessing risk, allocating resources, and planning strategies; i.e.,
developing a detailed development plan. It will provide better visibi-
1ity of the assumptions and dependencies upon which the success or
failure of the development effort depends.

The advantages or benefits that could be derived from a more realistic
model of the software development process are:
¢ A model which describes.the process in more breadth and detail
to provide a better understanding of the interactions and re-
lationships within the process
e A perspective to evaluate and analyze the symptomatic data
which are gathered during a development
o A framework in which the utility of new tools and methodologies
can be evaluated.
o A planning aid to assist in establishing resource mix require-

4-3

ments and schedules
e A project management aid to enhance progress determination and
problem identification

Current cost estimation techniques ([PUTN 77H), [REFE 77]) do not provide
any greater detail in their model of the software development process,
as shown in Figure 4-2.

The approach taken in this study was to attempt to model how software

is actually developed. As a starting point, an extension to Wolverton's
model that has been recognized in recent years is the addition of feed-
back paths as shown in Figure 4-3. This model acknowledges that redesign,
revisions to the requirements, and changes to the source code take place
constantly in the development of a software system. This iteration not
only relates to the correction of problems found in the later stages

of the development, but also represents an increase in the amount of
knowledge about the system -- its functions and uses -- that takes place
over the time span of a development.

These corrections and revisions take place as a function of the activities
the development personnel perform, not as a complete recycle of a phase,
as depicted in Figure 4-3. Therefore, Figure 4-4 is a representation of
this growth of knowledge about a system on a timeline. A part of each
subsequent phase to requirements analysis is correcting, modifying, or
adding to the requirements stated at the end of the requirements analysis
phase. This increase or expansion of detail, knowledge, and documentation
about the system that occurs during succeeding phases, then, includes the
updates and revisions to the preceeding concepts. These concepts were
previously discussed in Section 3.

d-d

PRICE-S
EXPENDI TURE
PROFILE BY PHASE .

DESIGN IMPLEMENTATION TEST & INTEGRATION

LINK CYCLES TO GET A PROJECT PROFILE

TIIS SUGGESTS CYCLES MAY BE ADDITIVE
OISPLAYED AGAINST A TIME BASE

EFFORY
PER
unItT
TimE
M-Y/YR)
PROJECT Cunve
TEST &
VALIDATION
g MODIFICATION PUTNAM L IFE
CYCLE MOUEL
EXPENDITURE
PROJECT MGT PROFILE BY
7 —— PHASE
TIME
Figure 4-2 Current Cost Estimation Technique's
Depiction Software Development Process
4-5

VERIFICATION PROBLEMS

\

DEFINLT
SOFTWAR

10N OF
E CODING
REQUIREMENTS PROBLEMS

4

SOFTWARE DESIGN
AND REQUIREMENTS
PROBLEMS

}

AN IR

SOFTWARE DESIGN

SOFTWARE CHECKOUT PROBLEMS

1469A-2

INTEGRATION &
VERIFICATION

Figure 4-3 Scftware Development Process
with Feedback Paths

4-6

Figure 4-4 Timeline Representation of
Software Development Process

REQ PRELIMINARY | DETAILED T oo i
ANALYSTS DESIGN DESIGN CHECKOUT INTEGRATION | MAINTENANCE
A
SYSTEM A
REQUIREMENTS PREL IMINARY AN
REVIEW DESIGN CRITICAL
REVIEW DESIGN A
REVIEW ACCEPTANCE
TEST

4.2 APPROACH TQ DECOMPQSING THE SOFTWARE DEVELOPMENT PROCESS
Conceptually, the software development process is a process which is
driven by a concept of, or requirement for, a target system and utilizes
the resources of a software production factory to produce an operational
system. The target system is a software system which has certain desired
characteristics. These characteristics have an impact on the amount of
resources which are consumed or utilized in the prbcess of producing the
operational system. The software production factory is the organization,
staffing, and development strategies superimposed on the resources of a |
project group (consisting of personnel and development tools), which
provide the production capability and environment for accomplishing the
system development. The operational system, the output of the process,
is represented by the documents, data, and code produced as a result of
the software development.

Imposed on this development process are a series of milestones which
represent intermediate formal reviews of the progress towards the opera-
tional system. Further, there are documentation requirements which define
what products are to be delivered. Almost all software developments have
these milestone and documentation requirements. Perhaps the most rigorous

set of requirements are those imposed by military standards. These con-
cepts are shown in Figure 4-5.

The currently utilized models of the software development process, dis-
cussed in Section 4.1, represent a high level decomposition of the
process, oriented toward the milestones imposed. Current cost estimation
techniques basically attempt to replace the process with a relationship
that represents the tranformation from the inputs, represented by the
target system characteristics and the resources of the software pro-
duction factory, to the outputs, represented by the documentation and
code.

Our approach to modelling the software development process was to

4-8

3d32u0) ss33044 Juawdo|aAag aueM3jos G-p a4nb|4

visct
S12n00yd SITLIALLIY S324N0S3Y/SH0LIVS
SINIWIUINDIY 1INCO¥d ISOdNI 4_- T R e e
_ b ik (RS _ A¥OLDV4
NO115nd0¥d
I4YML08

\

| $$3204d
INdLND oy ININd013A30

| I4YML40S
NI15AS

1399vl

4-9

L e S ——

G

decompose the process in more detail. The methodology used to
accomplish this decomposition involved a three-dimensional view (as
shown in Table 4-1): identification of the products of the software
development process; identification of the activities that comprise the
process; and, identification of the factors and resources that represent
the target system and the software production factory.

The products of this process that have been identified are those required
by militray standards. Intermediate products, as well as final products,
were considered. In addition to the number, type, and size of the pro:
ducts and the resources required to produce them, the quality of the
product was considered. The effort required to update and modify the
documents during subsequent activities is affected by the initial quality.
Taking this phenomena into account, we hope to be able to model the
interactions between phases that current cost estimation techniques are
unable to model [GRAV 76].

Identification of the various activities in the process was accomplished
by decomposing each phase identified in the high level models into the
typical activities performed during that phase. The activities were
identified at a level of detail at which we feel valid simulation models
can be developed, and at which valid empirical data can be collected.
Further refinement could, and may, be done if experimentation indicates
that it is necessary. However, it is felt that refinement to a level
where individual decisions are modelled and individual personnel within
the development process are modelled introduces far too much variation
for simulation techniques to be truly effective. The level to which the
activities identified are modelled is the team level; i.e., a group of
people working on a particular aspect of the software system at a parti-
cular time in the development. The interdependencies between the

activities and the types of resources typically utilized were also

identified.

{ TABLE 4-1
DECOMPOSITION METHODOLOGY

(1) Identify Products (intermediate and final)
- type, size
- resource allocation "
- quality

(2) Identify Activities

decompose phases

resource utilization
relationship to products
interdependencies of activities

(3) Identify Factors and Resources
- impact on activities

The last aspect of the decomposition involved identifying how the
resources, target system, and factors affecting the amount of resources
required would be described. These descriptive factors are the core of
the models and the input variables to the simulator. The results of

applying this methodology are contained in the next paragraph.

R s

4.3 DESCRIPTION OF MODEL

The activities, their interrelationships, and the products of the Software
Development Process are shown in Figure 4-6. This network of activities
represents a typical large-scale software development. While our intent
was to identify generic activities, the ones identified are biased by
software developments performed in accordance with military standards.
Our design approach, which is illustrated in the next section, where a
prototype simulator is described, involves a library of these activities
from which a subset could be chosen and interconnected to represent a
particular development. Other activities could be identified. Table 3
4-2 provides an explanation of each of the activities identified in the
figure.

3

Note that in Figure 4-6 several activities in the detailed design phase
and implementation phase are duplicated. These activities are performed
on a subsystem, or CPCI level. In the figure, a two-subsystem develop-
ment is represented. The sequence of activities, or process thread,
which is duplicated, would be repeated for as many subsystems as
identified in the target system. Each of these process threads are
performed normally by a specific group, in this case a programming team,
in the development organization. Other process threads can be recognized.
in the model description. For example, the process thread which begins
with Test Requirements Analysis in the Requirements Analysis phase and
proceeds through Test Planning, Test Planning and Preparation, System
Test Cast Generation, System Test Data Generation, and ends with System
Tests and Acceptance Tests would normally be performed by an independent
quality assurance or test group. Figure 4-6, then, provides a phase/
activity decomposition of the software development process illustrating
process flow and data or product flow.

The resources that are typically utilized in a software development are
identified in Table 4-3. The phase in which they are used is al1so shown.
Our model to date, represented by the prototype, only considers a subset

e T S Sl L i o - T %4

Py o=

R hida

. .
TS I

vouw. >V

REQUIREMENTS ANALYSIS

SOFTWARE
ToP
LEVEL
DESIGN

REQUIREMENTS |
DEFINITION

OPERATIONS

CONCEPT =

DEVELOPMENT

REQUIREMENTS
ALLOCATION

INTERFACE
CONTROL DOCUMENT
DEVELOPMENT

REQUIREMENTS
TRACEABILITY
ANALYSIS

—————————— —— ————— — —

DATA BASE
TOP LEVEL
GESIGN

>

PREPARE SDR
%A PACKAGE

A SPEC

TEST
REQUIREMENTS

ANALYSIS

MANAGEMENT

PLANNING
AND

CONTROL

INPUTS

SYSTEM
SPECIFICATION
(A SPEC)

SYSTEM
REQUIREMENTS
REVIEW
DATA PACKAGE

SEGMENT
SPECIFICATION

SYSTEM
INTERFACE
CONTROL
DOCUMENT

SYSTEM
INTEGRATED
TEST

PLAN

L R S -

SUBSYSTEM
DESIGN
DESIGN
SOFTWARE
ARCHITECTURE
DATA
BASE
DESIGN
TEST
PLANNING
UPDATE
REQUIREMENTS
SPECIFICATION

PRODUCTS

SOFTWARE SYSTEM
REQUIREMENTS
SPECIFICATION
(A SPEC)

INTERFACE
CONTROL
DOCUMENT

TEST
REQUIREMENTS
SPECIFICATION

QUALITY
ASSURANCE
PLAN

MANAGEMENT
PLAN

[> CONFIGURATION
MANAGEMENT

PLAN

D DEVELOPMENT

STANDARDS AND
CONVENTIONS

SYSTEM DESIGN

REVIEW DATA
PACKAGE

PRELIMINARY DESIGN

DESIGN

PERFORMANCE
REQUIREMENTS
ALLOCATION

DETAILED DESIGN

IMPLEMENTATION —————

%
| DETAILED
PROGRAM SOURCE SOURCE
l DESIGN CODE DEBUG == CODE
| sussystem PREPARATION REVIEW
i '
DETAILED DATA DESIGN
| | SaTa g AWALYS IS ,
| DESIGN ANALYSIS TRADES
| MODULE s
TEST UL
355%?5»: | INPUT/ DATA = TEST
GENERATION
CODE OUTPUT
DESIGN
PREPARE i
DEVELOP . BASE :
DESIGN - CDR DATA DEVELOPMENT
MULATOR PACKAGE AND
sl AND
. e REVISION
DETAILED SOUR SOURCE
PREPARE PROGRAM congcE - DEBUG [=={ CODE
BENCHMARKS DESIGN PREPARATION REVIEW
PREPARE | DETAILED DATA DESIGN MODULE
sgwey | L e :anusxs | TEST bATA 1= ﬁ?};LE
e @‘ DESIGN ANALYSIS TRADES | GENERATION
B SPEC | sussysTem I
N SYSTEM SYSTEM
B> | INPUT/ | TEST TEST
Ltk | CASE DATA
DESIGN | GENERATION GENERATION
| STANDARDS STANDARDS
| AUDIT t AUDIT
TEST |
| PROCEDURE '
DEVELOPMENT
oGO I CONFIGURATION
B MANAGEMENT/
| i PROBLEM
| REPORTING
| | UPDATE
PREVIOUS
| 32?0}5% ! e SPECIFICATIONS
SPECIFI- y
CATIONS
PRODUCT
COMPUTER PROGRAM COMPUTER PROGRAM
REQUIREMENTS DESIGN
SPECIFICATION SPECIFICATION
(B SPEC) (C SPEC, BUILD T0)
PRELIMINARY DATA BASE
USERS MANUAL SPECIFICATION

Ty vyvy %

FINAL INTERFACE
CONTROL DOCUMENT

DATA BASE SPECIFICATION

PRELIMINARY
DESIGN REVIEW
DATA PACKAGE

TEST PLAN

L e

CRITICAL
DESIGN REVIEW
DATA PACKAGE

TEST PROCEDURES

| |
" IMPLEMENTATION } TEST AND INTEGRATION Jl
: l
SOURCE SOURCE
] oesve r—J CODE CODE ‘ SUBSYSTEM |
TION REVIEW REVISION D’i Lol |
| |
INTEGRATION Jremmeee SYSTEM ACCEPTANCE
F'J e TEST TEST
TEST @’
TION
MAINTENANCE
OPMENT
10N I
SOURCE '
SOURCE
b~ 0BG = CcODE CODE l .
TI0N REVIEW REVISION E3>|
R [tooue |
o TEST |
SYSTEM :
| TesT |
DATA |
TION GENERATION Bbl
STANDARDS
AUDIT
| CONFIGURATION
| MANAGEMENT
‘ PROBLEM
GURAT [N REPORTING
NT/
NG UPDATE
UPDATE PREVIOUS
SPECIFICATIONS,

| PREVIOUS
SPECIFICATIONS

vV VYV ¥V

SOURCE CODE,
AND DATA BASE

S

PR T

COMPUTER PROGRAM
DESIGN SPECIFICATION
(C SPEC, BUILT TO)

USERS MANUAL
CODE, LISTINGS

DATA STRUCTURES
AND VALUES

TEST CASES

AND TEST i
DATA ‘4
b=

FiGure 4-6 SorTwarRe DEVELOPMENT Process MopeL

ACCEPTANCE
TEST i

" PRODUCTS

TEST RESULT
REPORTS

MAINTENANCE
MANUAL

DELIVERED
SYSTEM
(INCLUDING
ALL UPDATED
PRODUCTS)

VvV ¥

DELIVERY

Table 4-2 Activity Explanations

REQUIREMENTS ANALYSIS ACTIVITIES
Requirements Definition

- interpret and itemize requirements provided in the system
specification

Operations Concept Development

- define the system concept identifying the functions or processes
to be performed and their interactions

- define user interface at high level

Requirements Allocation

- allocate the requirements to the functions or processes to be
performed

- identify high level performance requirements

Software Top Level Design

- 1identify which functions are candidates for implementation in
software

- develop a hierarchy of those software functions
- 1identify at a high level the data flow between those functions

Data Base Top Level Design
- 1identify requirements for major files or data bases

Requirements Traceability Analysis
- assess the requirements allocation and top level design for
coverage of itemized requirements
Interface Control Document Development
- define interfaces between major system components or segments

Test Requirements Analysis
- develop preliminary test and integration requirements

Management Planning and Control

- document management, quality assurance, configuration management
plans

- establish development standards and conventions

ey — B SR S A i i i

Table 4-2 Activity Explanations (Continued)

Prepare SDR Data Package and A Spec

- document results of the technical requirements analysis activi-
ties in form of software system requirements specification
(A Spec)

- prepare data package for system design review

System Design Review 3
- customer review of top level design

Table 4-2 Activity Explanations (Continued)

PRELIMINARY DESIGN ACTIVITIES

Design Software Architecture
- software hierarchy to CI level
- CI interfaces established

Subsystem Design
- process design
- algorithm development
- define system inputs and outputs

Data Base Design
- data base structure established
- data definition

Performance Requirements Allocation
- storage and timing allocations

Develop Design Simulator
- prepare simulation for design analysis

Develop Prototype
- prototype coding for desion/concept analysis

Prepare Benchmarks
- prepare benchmarks for performance analysis

Update Requirements Specification

- make appropriate modification to requirements hased on SDR and

preliminary design activities

Test Planning

- develop plans for assessing the software systems compliance with

requirements

Prepare PDR Data Package and B Spec

- document results of technical preliminary design activities in

form of preliminary design specification (B Spec)

- prepare data package for preliminary design review (PDR)

T

Table 4-2 Activity Explanations (Continued)

DETAILED DESIGN ACTIVITIES
Detailed Program Design
- CI and module design
- detailed interface definition ‘
- algorithm detailed design :
- representation of design by design charts
- local variable identification 1

Detailed Data Design
- complete data element definition :
Input/Output Design !

- det:iled design of input/output variables, format, media to be
use

Data Flow Analysis
- Trace data flow between modules throughout system

Design Analysis and Trades

- assess design using simulator, prototype code, or henchmarks
- evaluate alternative designs

Standards Audit

- insure design representation complies with standards and conven-
tions

Problem Reporting
- maintain design problem reports
- attend configuration control meetings
- track problem resolution

Update Requirements and Preliminary Design Specifications

- modify specifications based on POR critique or detailed design
activities

Test Planning and Preparation
- develop test procedures for CI and system tests

Table 4-2 Activity Explanations (Continued)

—~

Prepare CDR Data Package and C Spec

- document results of technical detailed design activities in
form of computer program design specifications (C Spec)

- prepare critical design review data package ,

Critical Design Review
- customer review of detailed design

SRS el S5 e e - P D) ety il

Tabhle 4-2 Activity Explanations (Continued)

IMPLEMENTATION ACTIVITIES
Source Code Preparation
- code design
- code entry (keypunch, interactive)
- compilation/assemhly
- prepare users manual

Debug
- location and correction of compilation/assembly errors

Source Code Review
- development team review via code inspection, walkthrough, etc,

Source Code Revision
- revisions to code
- entry of revisions
- recompilation/assembly

Module Test Data Generation
- develop test data for module

Module Tests
- conduct tests on individual modules

Data Base Development and Revision
- develop data structures
- establish data values
- modify as a result of tests

Configuration Management/Problem Reporting
- maintain and control changes to source code
- maintain design and code problem reports
- attend configuration control meetings
- track problem resolution

Standard Audit

- 1insure source code is prepared according to standards and
conventions

4-20

Table 4-2 Activity Explanations (Continued)

Update requirements, preliminary design, and detail design specifications

- modify specifications based on activities performed during
implementation, problem report resolution, CDR critique

System Test Case Generation
- develop test cases to be used

System Test Data Generation
- deveiop test data for system testing

4-21

-

Table 4-2 Actiyity Explanations (Continued)

TEST AND INTEGRATION ACTIVITIES
Subsystem Tests

- perform CPCI tests

- prepare test results

Integration

- perform required builds, compilations, etc. to link code as
system

System Tests
- subject software to established system tests
- prepare test results

System Maintenance

- identify and correct problem identified during tests

- reenter code

- recompile

- prepare maintenance manual
Update Requirements, Preliminary Design, Detail Design Specifications,
Source Code, and Data Base

- modify specifications, source code, and data base based on
results of integration and test activities

- prepare for delivery of system

Configuration Management/Problem Reporting
- maintain and control changes to source code
- attend configuration control meetings
- track problem resolutions

Acceptance Test
- perform acceptance tests

4-22

- o ——] - e

PHASES

TABLE 4-3
PERSONNEL RESOQURCES

RESOURCES

SYSTEM ENGINEERS X
SYSTEM ANALYSTS X
X
X

QUALITY ASSURANCE ANALYSTS
TESTERS

PROGRAMMERS

PROGRAM L IBRARIANS
DATA_ENTRY/KEYPUNCHERS
OPERATORS

CONFIGURATION MANAGEMENT
MANAGEMENT X
ADMINISTRATIVE SUPPQRT

TECHNICAL PUBLICATIONS

| SPECIALISTS such as

OPERATIONS RESEARCH ANALYSTS
HUMAN FACTORS ENGINEERS
SOFTWARE SCIENCE SPECIALIST
STATISTICANS

BEHAVIORAL SCIENTISTS
AUDITORS X X i
FACILITES ENGINEERS X X

ol TRAINING A :
INSTRUCTORS X |

METHODS AND PROCEDURES ?

>< I>< < I>< b< 1< b< I>< =< 1< 1<]x<
>< I>< < I< b< I< b< b< I>< I>< < =<

> I ><
> I5< |I>< [I>x

P<><><><><
b I5< < [>< | <

APPLICATIONS SPECIALISTS X X
RELIABILITY ANALYST X X

4-23

o osp A

%
|
|
|

of these resources. The resources also include equipment such as
computers, terminals (TTY, CRT), keypunches, and RJE terminals. The
equipment resources are only modelled if contention for them introduces
a possible delay in the corresponding activity.

The resources are consumed or utilized at the activity level. This
allocation of resources to activities is not shown in Table 4-3, but is
done within the simulation model of each activity. The allocation of
personnel resources is generally done at a team level. Thus, one input
to the model will be the expected composition of the various teams or
groups comprising the development organization. A chief programmer
team-1ike organization was modelled in the prototype.

[t is anticipated that the resources will be modelled, not only by type,
but by productivity levels within the type; i.e., senior and junior level
programmers will have different productivity rates. Only one level was
modelled in the prototype.

The last aspect of our model of the software development process is the
identification of the factors that influence sizing decisions within the
activity models. Considerable work has been done in cost estimation,
software engineering, and software psychology research oriented toward
identifying the factors which influence the effort required to develop
software. References are identified in Section 7.

In the model, an activity is a sequence of tasks within a software

development that consumes or utilizes resources. The amount of resources,

or the effort, required to perform those tasks is a function of the goals \
of the activity, the size/difficulty of the systems or subsystem being

developed, the resources that are available, and the productivity at which

those resources perform (personnel) or can be utilized (development tools).

4-24

e

Some of the factors that comprise the goals, size/difficulty, resources,

and productivity were identified qualitatively as inputs to the simulator
in Table 3-1. It is the intent of this section to describe our concept
for modelling their impact quantitatively.

The goals of an activity are related to the products that activity
produces or to which the activity contributes, the required quality of
those products, and the schedule imposed on the activity. The size/dif-
ficulty of the system is represented by the number of subsystems to be
developed, their estimated size in lines of source code, the size of the
data base to be developed, and the complexity of the application. The
complexity is a calculated rating based on the application type, the
processing time requirements (real time, on-line, time-constrained, or
non-time constrained), the anticipated memory utilization, and the
dependency on hardware development. The resources available are the
personnel. Their productivity is impacted by their organization,
experience, the development tools to be used, and turnaround time on

the development computer. These factors are identified in Table 4-4.

The concept for how the factors will be used to model an activity is
shown in Figure 4-7. The factors related to the size/difficulty of the .
task are the input model parameters identified in Table 3-1. They will

be combined with the goals of the development (products, quality, and

schedule), and utilize product/effort transformation relationships to

derive the effort required to accomplish the activity. Schedule impact

on the effort required to perform an activity is modelled in these

relationships.

The resources available and their organization will be combined and
utilize resource productivity figures to derive the expected productive
effort achievable. The affect of team structure, basically in the form
of communication overhead which negatively impacts productivity, is

4-25

Table 4-4
Factors Which Affect Activities

e e e e e

DEVELOPMENT GOALS

Products
- number
- type
} Quality
‘ - error rates
Schedule
- milestones

SIZE/DIFFICULTY ESTIMATE
System Size
- number of subsystems (CPCI's)

- number of lines of source code (language type, percent
new code)

- data base size (number of data sets, number of preset
values)

'Complexity
- type of application
- processing time requirements
- memory utilization
- hardware dependencies

- rating
RESQURCES
- team composition (type) i
- staff mix (personnel type, experience, number) 3
!
PRODUCTIVITY [

- personnel productivity
- development tool impact
- turnaround time

4-26

gissl

SILVWILST ININ0OSIY
3INA3IHIS
1503

3daouo) |3poW A3§A4IY L[-p d4nbiy

140443
JATLINAOYJ -NON

NLINYLS

140343 3A11In00Y¥d

Wvil

$1001
IN3Wd013A30

R SR
_ xow | |
| | aLtarLongodd | |
_ 32¥N0S Ty |
| |
|| samusnoraviau| |
| |NOILYWYOASNVYL
viva| [1¥0443/13004d |
YOLVINKIS _
weanil — —]

[oN1av0)
324N0S3Y]

a34Indb3y 140443

Hua==u=9m“
[ALTWND
$17na0Y¥d

ALTIMI4410

/311S

| SY313WVivd
NOILVHEI VD

| S¥3LIWVAVd
| 13004

4-27

taken into account in this portion of the model. The result of the

comparison of effort required with productive effort achievable will
provide cost and resource loading requirements in the normal mode of
operation. As an alternative mode of operation, a resource loading

plan can be input and schedule can be output.

The key to the concept is the development of the product/effort
transformation relationships and the resource productivity matrix. Our
current approach to evolving these is the use of empirical data to derive
first approximations and then using the simulator in a calibration mode;
i.e., tuning the simulator by comparing simulated results with past
historical developments or on-going developments. Currently these
activity models are still at a conceptual stage. Very high level models
were used in the prototype to be described in the next section.

4-28

e %
=T

4.4 MODEL UTILITY

The conceptualization and decomposition of the software development
process as a sequence of activities, as shown in Figure 4-6, provides
a model which can be used at several levels. At one level, the model

can be used as a checklist for planning and progress status. The list

of activities typically performed during a software development, and the
interaction can be used to plan the activities to be performed in a future
development. Once this plan is established, completion of these acti-
vities can be used as a status measurement more accurate than the
normally imposed milestones.

At the next level, the model can be used as a PERT-COST tool. The current
prototype tool that has been developed has the capability with which
activity delay times could be modelled as distributions representing worst
case, most likely, and best case estimates of the schedules for those
activities. The simulation would then result in the calculation of the
expected time in which the network of activities would be completed. An
enhancement to the PERT-COST approach available with our simulation
approach is modelling resource usage as a function of time also.

A third level, that at which the prototype simulator was developed, is
a high level process model. At this level, the activities are modelled
at a relatively high level. Sensitivities in the development plan and

in the assumptions made in the model development could be analyzed. At
a high level, impacts of using different techniques and tacls could also
be analyzed.

The last and most detailed level, is a detailed process model. At this
level all of the concepts introduced in paragraph 4.3 would be utilized
to model the activities. The analysis capabilities possible in the
process model mentioned above would be of greater fidelity due to the
finer detail of the activity models. At this level of capability, the
full complement of support to the management planning and control of a

4-29

software development would be provided. This support would span project
planning, project control, technology assessment, and contingency planning,
as shown in Table 4-5.

Table 4-5
Utility of the Software Development
Process Simulator

e PROJECT PLANNING o TECHNOLOGY ASSESSMENT
- COST ESTIMATION - ASSESSMENT OF IMPACT OF NEW
- TIME REQUIREMENTS TOOLS, TECHNIQUES, AND
- RESOURCE REQUIREMENTS METHODOLOGIES
e PROJECT CONTROL o CONTINGENCY PLANNING
- PERFORMANCE ASSESSMENT - IMPACT ASSESSMENT

- BOTTLENECK ANALYSIS
- RESQURCE TRADEOFF ANALYSIS

4-30

~

SECTION 5
DEVELOPMENT OF A SIMULATOR

5.1 PROTOTYPE DESIGN CONCEPTS

To further evaluate the feasibility of simulating the software development
process, a prototype simulator was constructed and demonstrated by modeling
a past software development. The prototype was developed with the concept
that it could eventually be extended to provide a full software develop-
ment procecs simulation capability.

During the construction of the prototype tool, there were several design
decisions made. Two of these decisions affecting the implementation of
the simulator are described here. These are followed by a general de-
scription of the prototype simulator that was built, and the experiment
performed using that prototype.

The first decision made was to use a process-oriented view in the simula-
tion instead of the traditional event orientation. An event-oriented view
tends to place a simulation at one level of detail, since all state changes
in the system being modelled are represented by events that occur at that
particular level only. The process-oriented view lends itself to multi-
level modelling since process descriptions allow one to describe proc-
esses and their relationships as sequences of activities without having

to explicitly sequence events, where an activity can easily be a process
with its own set of activities.

With a process-oriented view, the system being modelled is viewed as a
collection of interacting processes, with the interactions controlled
and coordinated by the occurrence of events. T[he advantages of this
view are many. First, a process-oriented model is a more natural way

to express the structure of a system. Secondly, the user does not have
to define and keep track of the events which signal state changes in the
system since the simulator does the event sequencing. Furthermore, a

5-1

process orientation automatically provides for process structuring.
Finally, a process, with all of the event definition and sequencing it
implies, can be a subprocess of another process, contain its own sub-
process, or be both. This point shows another advantage to the process-
view; i.e., that the individual processes that make up a system being
modelled can be defined in varying levels of detail, depending on a
user's desires and his knowledge of the process in question. Note also
that this level of detail does not have to be consistent among the
pracesses in a system for the model to be usable.

The second design decision made for the software development process
simulator was to use the technique of path expressions as a simulation
tool. Our use of path expressions has closely followed the work of
Habermann [HABE 75], who defined a notation for describing the synchro-
nization and coordination among processes to be used as part of a program-
ming language. This work has been expanded and built upon in flow
expressions [SHAW 78], used to describe the sequential and concurrent
flow of entities through software components, and in event expressions
[RIDD 76], used to describe software system behavior. These experiences
with path expressions in software system descriptions provided a natural
extension to simulation applications.

When simulating large systems, if we assume a process-oriented view of
simulation as we have discussed above, one of the greatest problems is
being able to explicitly show the interactions among processes in the
system, especially at a user level. If one wanted to know the proce-
dural flow through a given set of processes, the only method available
was to trace through the actual code of the processes. As path expres-
sions are concerned with the interactions between processes, it was a
natural extension to apply them to process-oriented simulation to aid
in describing the behavior of systems.

5-2

5.2 PROTOTYPE IMPLEMENTATION

With the above design decisions in mind, a prototype software development
process simulator was built. A set of simulation tools which we had
developed for modelling computer systems, ([WONG 78a], [WONG 78b]), were
utilized. Among these were: MOKTRAN, a macroprocessor used to provide

a FORTRAN preprocessor with structured programming constructs; and,
SIMTRAN, a process-oriented simulation language based on GASP IV [PRIT 74].
The relationships between these tools is shown in Figure 5-1.

Library

SIMULATION LINKER/
DESCRIPTION| ™ @’ > Fggﬂﬁ’c‘g —»(LoADER
MORTRAN

Library

SIMULATION

Figure 5-1
Prototype/Tools Relationships

At the core of the prototype is the Path Expression Parser/Interpreter
(PEPI). PEPI consists of two basic parts: the Path Expression
Interpreter (PEI), and the Path Expression Parser (PEP). The purpose of
the Path Expression Parser is to read a user's path expression (written

5-3

in the Path Expression Language - PEL) and generate a table such that PEI
can read the table and control the execution and synchronization of the

processes in the simulation.

PEI reads the table from PEP, determining

which processes are to be started, which order they are to be performed
in, and when they are to be started.

Figure 5-2 shows the structure of PEPI.

provide four things:

1) A PEL source file describing the simulation's path;
2) A list of process names to be used in the model;

3) A SIMTRAN process library for the processes to be used in
the simulation;

4) A deck of parameters for a given simulation.

List

Process Namg

PEL

User

Process
Library

Mo i

Path
Tables

To use the system, a user must

-
SIMTRAN
Library

GASP IV
Library

Model
Parameters

Simulation
Reports

e

Figure 5-2

et

Path Expression Parser/Interpreter Overview

5-4

Path expressions are a quick and easy way of showing the sequencing
. of processes, assuming that the processes have been defined. Through
a relatively simple syntax, descriptions of parallel and/or sequential

processing within the system being described are easily generated.

For example, given:

PROC1: (PROC2,PROC3),PROC4
as a path expression where a comma indicates process sequencing, a colon
shows process parallelism, parentheses indicate process groupings, and

all strings are process names, a diagram of the same sequence would
appear as:

R,

The advantages to this technique are readily apparent. Once a given

set of processes has been defined to the level of detail desired, one
needs only rearrange the path expression to change the simulation. The
implication here is that the generator of the path expression does not
have to know about simulation to experiment with a given model. This
approach leads to a highly modular simulation, which gives the simulation
builder enormous flexibility in adding, deleting, or modifying the
processes involved. Further, once a process has been properly defined
using this technique, it can be placed in a library of "common" processes.
The process can then be used in as many different simulations as appli-
cable by writing the proper path expression. Another advantage to path
expressions is inherent in their simplicity: given a set of processes,
the two operators":"and",", parentheses, and an understanding of their
use, any number of simulations can be easily constructed and, more
importantly, readily understood. ’

5-5

PEP will read the process name list and the PEL source to generate the
path table for PEI. The process name list is just a list of names, one
per card image, where the first six characters on the card are assumed
to be process names. There must be a one-to-one relation between the
names in the list and the processes in the SIMTRAN process library. PEL
has several featuresof note: 1) it implements the path expressions des-
cribed before; 2) it is totally free-format; 3) a semi-colon
indicates the remainder of a line is comment; and, 4) it has macro-
definition capabilities. Notice that macros allow easily repeating
processing sequences, and also that macros can contain other macros.
Using this syntax, as shown in Figure 5-3, one defines the path
expression of the simulation to be performed. This information is

then used by PEP to generate path tables. These tables contain infor-
mation about the sequencing and synchronization of processes that were
used in the path expression. PEI, reading the path tables, executes
the proper groups of processes as defined in the path expression, so
that all sequencing and synchronization is done as defined by the user.
However, for PEI to work properly, it first needs the library of SIMTRAN
processes. The library must contain a process description for each
process name used in the path description. As an option, the user can
describe additional processes besides the ones available in the process
library. These processes would be described using SIMTRAN [WONG 76].
Finally, GASP will read the parameter deck provided by the user for such
control values as the start time, final time, and seeds for random
number streams. These parameters are used by GASP and SIMTRAN run-time
routines to control the execution of the simulator.

Once a simulation has been performed, PEPI provides certain output
reports. The reports from PEP identify any syntax errors in the user's
path expression and they display, by a series of tables, the results of
the parsing of the path expression. The reports from PEI identify the
processes that are initiated. SIMTRAN and GASP IV also provide standard

5-6

simulation reports. These reports provide the results of the simulation.
They contain resource utilization statistics, wait time and queue length
statistics, and detailed traces of the simulation. The net result of
this information is to tell the user how his model performed under the
conditions specified in his parameter deck.

Figure 5-3, below, describes the syntax of the Path Expression Language
(PEL) and Figure 5-4 provides an example of the usage of the language to
specify a process structure.

Meta Symbols

| is an alternation of symbols;
[] s zero or more repetitions of the enclosed symbols;
%[(]% indicates logical grouping;
::= indicates replacement;
-[]- 1indicates zero or one occurrences of the enclosed symbols.

PEL Definition

<simulation description>::=<heading>-[<macro table>]-<simulation>END
<heading>: :=BEGIN<title>
<title>::=<character>[<characters]
<macro table>::=MACRO-TABLE<macro definition>[<macro definition>]
END-MACRO

<macro definition>::=<identifier>=(<path expression>)
<identifiers::=<character>[<character>]
<path expression>::=<term>[,<term>]
<term>: :=<factor>[:<factor>]
<factor>::=<identifier>>
<simulation>: := SIMULATE= (<path expression>)

Figure 5-3
Backus-Naur-Form for Path Expression Language

BEGIN EXAMPLE 1 |

MACRO-TABLE b

A= (X1,Y1)
B= (X2:X3,Y2,A)
END-MACRO

SIMULATE = (A,B:A,X1,X2:Y1)
END ;EXAMPLE 1

SIMULATE statement represents the following network of processes:

X2 .
X1—Y1 ::>—¥2--x1--¥1 X2 i
{ X3 1
Y1
X1 Y1
Figure 5-4

Path Expression Language Example

5-8

e

5.3 PURPQSE OF EXPERIMENT

The primary purpose of performing an experiment was to determine the
feasibility of the basic capabilities necessary for the simulation of

the software development process. In addition, the experiment illus-
trated the utility of the path expression and process-oriented approaches,
and provided some experience during which lessons could be learned and
refinements in our approaches could be accomplished.

5.4 DESCRIPTION OF THE EXPERIMENT
The experiment was oriented toward modeling a past large-scale software

system development. The simulated results were then compared with the
historical data that was maintained about the development effort. This
approach to an experiment is more modest than a full validation of the
simulation model in which the simulated results would be used to predict
the actual results, and a comparison of predicted versus actual would
provide a validation criteria. Our experiment was more a calibration of
the model to assess if, in fact, a development effort could be modelled
to some degree of accuracy. Calibration is utilized by analytic tech-
niques also (RCA PRICE-S and Putnam's SLIM) to tune the analytic model
to the development organization. We envision this practice also
pertaining to the Software Development Process Simulator, where various
parameters or internal tables within the simulator could be tuned to a
particular development organization by modeling past developments.

The software system development that was modelled consisted of three
major subsystems (or CPCI's). The system was a command and control
ground system developed under contract for the Air Force. The three
subsystems ranged from 75,000 to 150,000 1ines of JOVIAL source code each
(including comments). Complete statistics on the development activity
were maintained, including the number of design problem reports, software
problem reports, and source code statistical profiles, as well as man-
power expenditures.

5-9

The development was performed in strict accordance with military standards
with staggered milestones for each of the subsystems. Most current cost
estimation techniques do not model this incremental subsytem development,
as shown in Figure 5-5. Qur approach to modelling tnis development tech-
nique will be illustrated later in this section. Tne development that

was modelled, however, only consisted of detailec design, implementation,
test and integration phases since the CPCI's were modifications of an
existing system, and a requirements analysis phase was unnecessary. The
flexibility of the simulation approach to model only those phases per-
formed during the development will also be illustrated. Some simplifying
assumptions were necessarily 1ide because of the budget and time limita-
tions of the study. No constraints were imposed because of the restric-
tions of the simulation approach. These limitations to the experiment

are described in paragraph 5.5. The detailsof the experiment model follow.

Four types of resources were mudelled. These resources represent the

four types of personnel used: System Engineers (SYSE), Analysts (ANLT),
Programmers (PROG), and Quality Assurance/Test personnel (QA). Grouped
with the quality assurance and test personnel are configuration manage-
ment personnel, program support librarians, and other support personnel.

The simulation also consisted of two major types of processes, repre-
senting different perspectives in the development of a system. The first
type views a software system as a whole and models the integration of
various CPCI's (Computer Program Configuration Items) into the final
deliverable product. Secondly, there are those processes that are
performed during the development of a particular subsystem or CPCI, and,
hence, view the system as consisting of the particular CPCI. Thus, at
a system level, the processes modelled were:

e TSTP: Test Plan Development;

o TPRD: Test Procedure Development;

e SSVT1 & SSVT2: Subsystem Validation and Test.

5-10

DETAIL
DESIGN || IMPLEMENTATION |~ TEST
R SYSTEM TEST
REQUIREMENTS | | PRELIMINARY DETAIL
ANALYSIS = DESIGN cesxj- IMPLEMENTATION L{ TEST ...
Scorz
A - DETAIL
SoR con DESTGH (| IMPLEMENTATION{—{ TEST [
A A
COR3 VATSR
CEGEND
SOR |SYSTEM REQUIREMENTS
REVIEW
POR |PRELIMINARY DESIGN
~ |REVIEW
COR [CRITICAL DESIGN
REVIEW
[VATSR|VALIDATION & ACCEPTANCH
TEST SPECIFICATION
REVIEW
Figure 5-5 Incremental Subsystem Development
5-11

At the subsystem level, or for each CPCI, the processes modelled were:
e DPD: Detailed Program Design;

CDB: Coding and Debug;

TST: Subsystem Testing;

IMD: Integration and Maintenance Support.

The motivation for the above breakdown of processes is threefold. First,
these processes are the first version of a library of generalized pro-
cesses that can be used to simulate any software development. To faci-
litate this approach the processes are parametric, that is, certain
variables are passed to the process to represent the specific system
being developed. Secondly, we can simulate several CPCI's being
developed concurrently with phased milestones, by specifically providing
generalized processes for simulating CPCI development. Third, we demon-
strate the flexibility allowed with simulation by only modelling the
processes performed in the subject development.

For the prototype simulation, there were three individual CPCI's that
were all portions of the same system. For convenience, these subsystems
were called Subsystem 1 (SS1), Subsystem 2 (SS2), and Subsystem 3 (SS3).
Process scheduling and interaction is shown in Figure 5-6 with the
corresponding path expression shown in Figure 5-7, as output from PEPI.
Note the conciseness with which the information in Figure 5-6 is expressed
in Figure 5-7.

5.5 LIMITATIONS OF THE EXPERIMENT 7
At present, the primary limitation of the experiment is the fact that
the level of abstraction of the simulation is high. The relationships

internal to the process descriptions representing the activities were
not modelled at a very sophisticated level of detail. In the processes
that were defined for the prototype model, the approach was to view
each activity as a consumer of resources for various amounts of time. |

5-12 ?

§
¢
'
&

DPDI :
CDB
ST G
DPD2
CDB2
g IMD2]
DPD3
F“""ﬂ‘ cDB3 i
‘ﬂ' IMD3 4‘
TSTP
F""""L__IEEE____ﬁ
SSVTI SSVT2
' 1
A A A
CDR VATSR ACCEPTANCE
TEST
LEGEND
DPDi | DETAILED PROGRAM DESIGN
CDBi | CODING AND DEBUG
TSTi | SUBSYSTEM TEST
IMDi | INTEGRATION & MAINTENANCE
SUPPORT
TSTP | TEST PLAN PREPARATION
TPRD | TEST PROCEDURE DEVELOPMENT
SSVTT | SySTEM TEST & INTEGRATION
SSVT1
COR | CRITICAL DESIGN REVIEW
VATSR | VALIDATION & ACCEPTANCE
TEST SPECIFICATION REVIEW
: Figure 5-6 Process Flow

W11 2131415161718]19110411412413114115416417118] MONTH

SUBSYSTEM 1

SUBSYSTEM 2

SUBSYSTEM 3

SYSTEM
INTEGRATION

T
05/29/79 19.6930
PATH EXPRESSION PARSER
1 BEGIN SAMPLE
2 .
3 i SDPS SAMPLE MODEL
4 H
s ; BY J.A. MCCALL
6 ; A.H. STONE
7 :
8 ; APRIL 1979
S H
10 MACRO- TABLE
" DESIGN = (DPD1:DPD2:DPD3)
12 CODING = (CDB1:CDB2:C0B3)
13 TEST = (TST1:TST2:TST3)
14 INTEG = (IMD1:IMD2: IMD3)
15 END-MACRO
16 3
17 ;. BEGIN THE SIMULATION
18 -
19 SIMULATE = (DESIGN:TSTP,
20 CODING: TPRD.
2 TEST:SSVT1,
22 INTEG: SSVT2)
23

END ; SAMPLE

n
o

24 LINES PROCESSED
O NON-FATAL ERRORS
0 FATAL ERRORS

--- PROCESSING COMPLETED

PAGE 1
VERSION 1.8

DESIGN PHASE
CODING PHASE
TESTING PHASE
INTEGRATION PHASE

e e e .

Figure 5-7 Path Expression

Subsystem size, complexity, project organization, team structures,
productivity figures, and turnaround time on the development computer
were considered in representing the level of effort required to perform
each of the activities. These variables were calibrated to the past
development. They were not all controlled by input parameters.

. For example, the considerations that were taken into account to model the |
i Coding and Debug (CDB) process for Subsystem 1 (SS1) are listed below: }

e Each subsystem or CPCl was developed by a team during this
project. The teams were a modification of chief programmer
teams and had a hierarchical organization of a system engineer
as team leader, one or more analysts, and one or more programmers.
This team structure was utilized in the model for the design
. processes, as well as the coding processes. Eventually we would
; want to have available other team structures which could be iden-
tified parametrically or provide the capability to impose a team
] structure parametrically. For the prototype, only one team struc-

ture was modelled.

e The sizing of the team was accomplished by considering size of
the subsystem, complexity of the subsystem, and historical data
of turnaround time on the development computer and productivity
figures. These variables eventually will be parameters in the
formulation of personnel-type requirements. Experience levels
for the various personnel types were not taken into account in
the prototype, and only the four types of personnel mentioned
before were modelled. The sizing calculation for subsystem 1
resulted in a team of a system engineer, two analysts, and two
programmers.

The degree to which the quality of the product resulting from an
activity affected subsequent phases was only modelled at a gross

#we! yttlizing the problem report rate to size the maintenance
Pt lavel

The processes were parametric, in that resource levels and timing variables
were parameters, and used as library functions in the simulation; however,
further extensions are required before they could be used generally.

The input and output capabilities of the prototype simulator were very i
limited. A minimum number of inputs were required; most variables were b
incorporated in the process descriptions. The output capabilities were

restricted to those provided by PEPI, SIMTRAN, and GASP IV. No additional i
output reports were generated. The outputs are illustrated in the next]
section. ;

5.6 RESULTS OF THE EXPERIMENT i
This experiment was performed in a calibration mode. There were records

available from a past development effort performed at General Electric ;
for the Air Force, as was described in Section 5.4, and the simulation
was based on the historical data available. The manner in which this
calibration was performed was to use this data from the development
project to drive the simulation in an effort to produce results that
approximated other data from the project. At a summary level, the

i fay

results of our simulation are shown in Figure 5-8. The line labelled
"ACTUAL" is the graph of the data from the actual Air Force project
superimposed on the graphs of the simulation results. Cursory examina-

i

tion of the data shows a clear correspondence between observed and
experimental values.

Comparison of the graphs in Figure 5-8 shows that there is a 4.98% error
between the areas underneath the observed and experimental data curves.
These results are considered quite acceptable. Some of the peaks of
spikes seen in the actual data can be attributed to five-week fiscal q
months, which plotted at a granularity of one month causes higher man-
power expenditures to be illustrated.

-
£
T
(&)
<
11 1| IS
18
740N
(L)

2ll<
o | | O
R

N

w i ! -
(7220 N = |
ol =2

AREAS :

417.425

ACTUAL :
SIMULATION: 396.625

4.98% ERROR

DS
OO0
\ v\nonouo,
4'6% .30

) K
OO
OO

» 00“_

9,
.0
0000

®.
OC
038,

N o 0050 %% %
B N s arasesscorosatel
e R R RS RKKRS
S e R IARIELLK
N RELRRRRIKES
SRR QNN
2 ¥R B I YR ez e .

8 9 10 1M 12 13 14 15 1617 18

& 9% ¢ 17
MONTHS

3

Figure 5-8 Experiment Results

5-17

In addition to these plots, resource utilization and queue statistics
are provided and also a dynamic trace of the complete simulation. These
data are available for performing detailed analyses of bottlenecks in
the development and impacts for changes.

5-18

e e e

ey LT

SECTION 6
CONCLUSIONS

6.1 SUMMARY OF SIGNIFICANT RESULTS
Our research has covered the spectrum from concept formation to analysis
to experimentation. First, we addressed the problem of how to apply

simulation techniques to study the software development process. Then,
we investigated what the characteristics of software developments are,
based on the "world-view" established by our simulation approach. Final-
ly, we studied when our modelling methodology is vaiid by learning how to
design simulation experiments based on our modelling approach. Table 6-1
summarizes our major accomplishments, and indicates where we go from here.

Table 6-1

Conclusions Matrix

ACCOMPLISHED FUTURE
(1) SIMULATION APPROACH
Combined activity-product Identification of simulation
model forms conceptual variables, model rules, model
basis. inputs and outputs.

(2) PROCESS DECOMPOSITION

Activity-product network Detailed specification of
demonstrates practical activities, products, factors,
application. and resources.

(3) SIMULATOR DEVELOPMENT

Simulator prototype Data collection to support
demonstrates experimental full experiment.
feasibility.

6.2 EVALUATION OF EXPERIMENT

The experiment provided not only a demonstration of some of the modelling
concepts and approaches established during this study but also, provided
the basis for evaluation of our ideas. The accuracy of the results, sub-
stantiating the ability to calibrate the model, were very promising. The
use of a process-oriented simulation language and the path expression
interface to the simulator provided a very easy-to-use and flexible simu-
lation tool. This is important from two viewpoints. First, the tool, to
be effective, must be planner/analyst-oriented rather than simulation-
oriented. The path expression language provides an automated way to lay-
out a PERT-1ike plan of the network of activities to be performed. The
underlying process-oriented simulator, driven by the path expression, then
provides modelling capabilities far more powerful than the probability
distributions for schedules provided in a PERT system.

The ease of selecting and interconnecting the activities is a key concept
because it facilitates tailoring the model to the specific development.
Analytic techniques, in comparison, are developed based on past develop-
ments without differentiating between projects. For example, there is no
differentiation between a project that uses simulation during design and
one that does not, or between a project that has a formal requirements
analysis phase, one that does not. The analytic techniques tend to be a
gross approximation of the software development. The activity models
allow tailoring of the model to the actual development. Only those acti-
vities to be performed during the development are selected.

The addition of activity models which are not in the library of generic
activity models is easy. In the prototype simulator this was accomplished
by writing a process using SIMTRAN and including its reference in the path
expression. Inclusion of acquisition office activities could be accom-
plished in this manner.

6-2

. Nr— 2
- _.___.M‘M

The framework provided by the model allows experimentation/evaluation of
the individual activity models. The framework should also aid the estima-
tion process.

The simulation run time and cost was insignificant. The simulation tools

developed and utilized have evolved over a number of years, and are oriented

specifically to modelling computer system applications.

The concept of activity/product progression models of the activities shows
promise in accounting for quality and documentation considerations in the
software development process. However, they were not modelled in the
experiment in enough detail, or for all of the activities to provide a
thorough evaluation.

A true test of the model would be to use it as a prediction tool and then
as a status assessment tool during an actual development. Once in the
development, the model could be used to evaluate progress by substituting
actual data at the end of a phase into the model and conduct a simulation.
The impact on the rest of the project plan, based on the actuals at that
time, would be provided by the simulator.

Based on the experiment results and the modelling concepts that have
evolved, we conclude that it is feasible to model the software development
process. In addition, the insight gained from the model can have signifi-
cant benefits to the management of the development effort. These benefits
will be derived from a better understanding of the software development
process through research and evaluation using the model of development
techniques, organizations, and methodologies. And, the benefits will be
derived from the use of the model as an automated tool supporting cost
estimation (planning), and project progress assessment (control). In
order to realize those benefits, some additional research tasks must be
conducted. These tasks are identified in the next paragraph.

6-3

A

g Ao i I A v i Lo N A I e R o e L

6.3 TOPICS FOR FURTHER INVESTIGATION

The topics for further investigation fall into three areas: (1) development
of the simulator; (2) experimentation and demonstration of the simulator;
and, (3) further basic research.

The prototype simulator developed during this study was constructed to
demonstrate our approach to modelling the software development process,

and to assist in the assessment of the feasibility of the approach. In
addition, extensibility was a major design goal of the prototype; i.e., we
attempted to develop the prototype so that we could expand it into a full-
capability simulator. The development of the Path Expression Parser/Inter-
preter, based on the SIMTRAN simulation language, provides the core of the
future simulator. The expansion required includes development of the
library of activity models and enhancement of the input/output capabilities.
The activity models used in the prototype were not modelled at a very
detailed level or were not as parametric as required for general use. Also,
not all activities identified in Section 3 were modelled. The input/output
capabilities of the prototype relied on the plotting and histogram output
capabilities of GASP IV, the standard simulation reports of SIMTRAN, and
the developed path expression parser for input. The path expression
capabilities need to be expanded to allow more network expressions to be
modelled, and management-oriented reports need to be generated.

Once the simulator has been developed, we feel it should be calibrated in
an Air Force Systems Programs Office environment. This calibration would
involve modelling past developments and turning the model to the results
of those developments. After calibration, the simulator should be utilized
during an actual development in an experimental model; i.e., during the

use of the simulator, evaluation of its utility should be conducted.

Further basic research is required also. Prior to the development of the

full complement of the library of activity models, further research into
modelling some of the activities at a greater level of detail is needed.

6-4

This includes, not only developing the models, but supporting that
. development with data collection during actual software development projects.

M e~ e ety

SECTION 7
BIBLIOGRAPHY

The Bibliography contains references listed alphabetically according to
four categories:

ANAT

ARON

BELA

BOSC

CARR

CAUD

cosa

ELYE

GEHR

GORD

76

74

76

78

75

77

78

77

76

78

Software Project Management (Models);
Simulation and Modelling;

Cost Estimation; and,

Others.

SOFTWARE PROJECT MANAGEMENT (MODELS)

"An Air Force Guide to Software Documentation Requirements",
W.L. Schoeffel, MITRE Corporation, June 1976.

Aron, J.D., The Program Development Process, Addison-Wesley
Publishing Company, Menlo Park, California, 1974.

Belady, L.A., et al., "A Model of Large Program Development",
IBM Systems Journal, Vol. 15, No. 3, 1976.

Bosch, J.A., Briggs, P., "Software Development for Fly-by-Wire
Flight Control Systems", GE TIS, 1978.

Carrow, J., et al., "Workbook on Structured Programming",
NTIS, February 1975.

Caudili, R., "Understanding the Development Life Cycle",
1977 National Computer Conference.

Cosgrove, D., "ESD Software Acquisition Process Model Concept
and Feasibility", MITRE Working Paper-21981, November 1978.

Ely, E.H., "Software Management: A Dynamic Approach", Defense
Systems Management College, May 1977.

Gehring, P., "A Quantitative Analysis of Estimating Accuracy
in Software Development", NTIS AD A-047 674, August 1976.

Gordon, S.C., "The Develupment of a Computer Software Manage-
ment Discipline", Proceedings of the 1978 National Aerospace
and Electronics Conference, 1978.

HAGA

HIEM

KOLA

LIFE

LOVE

LOVE

METZ

PODO
SACK

ScoT

SOFT

TURN

WILL

75

75

76

74

76

77

3

77
70

73

77

76

76

Hagan, S.R., et al. "An Air Force Guide for Monitoring and
Reporting Software Development Status", MITRE Corporation,
September 1975.

Hieman, P., Programming Methodology -- Lecture Notes in
Computer Science, Springer -- Verlang, New York, 1975.

Kolasheski, R.F., "An Investigation into the Feasibility of
Using the Leontief Input -- Qutput Model in the Quantitative
Management of Computer Programming", USASCS-AT-76-08, 1976.

"Life Cycle System Management Models for Army Systems",
Draft DA Pamphlet No. 11-25, April 1974.

Love, Tom, "A Review of the Variables Which Influence the
Software Development Process", GE TIS 761SP001, 28 June 1976.

Love, T., Fitzsimmons, A., "A Survey of Software Practitioners
to Identify Critical Factors in the Software Development Process",
GE TIS 771SP002, 25 January 1977.

Metzger, P., Managing A Programming Project, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1973.

Podolsky, J.L., "Horace Builds a Cycle", Datamation, Nov. 1977.

Sackman, H., Man-Computer Problem Solving, Auerback Publishers,
Inc., Princeton, New Jersey, 1970.

Scott, R., Simmons, 0., "Pred1ct1ng Programming Group Producti-
vity - A Commun1cat1ons Model", First Annual Software Engineering

Conference, 1975.

"Software Phenomenology", U.S. Army Institute for Research in
Management Information and Computer Science, Working Papers of
the Software Life Cycle Management Workshop, Airlie House,
Virginia, 21-23 August 1977.

Turn, R., Davis, M., Reinstedt, R., "A Management Approach to
the Development of Computer-Based Systems", International

Conference on Software Engineering, October 1976.

Willworth, N.E., “Software Data Collection Study: Survey of
Project Managers", RADC-TR-76-329, December 1976.

7-2

T T e

COOK

GREE

HABE

MAHM

MALC

MCCA

MCCA

PRIT

RIDD

SHAW

SMAL

WILL

WONG

68

67

75

77

62

76

78

74

76

78

68

74

75

SIMULATION AND MODELLING

Cook, W.H., "Decision Analysis for Product Development", IEEE
Transact1ons on Systems Science and Cybernetics, Vol. SSC T,
No. 3, September 1968.

Greene, James H., Operations Planning and Control, Richard D.
Irwin, Inc., 1967.

Habermann, A.N., "Path Expressions", Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA, June 1975.

Mahmoud, M.S., "Multilevel Systems Control and Applications:

A Survey", IEEE Transactions on Systems, Man and Cybernetics,
Vol. SMC-7, No. 3, March 1977.

Malcolm, D., "System Simulation -- A Fundamental Tool for
Industrial Engineering", Simulation in Social Science, Prentice-
Hall, Inc., Englewood Cl1iffs, New York, 1962.

McCall, J., Seyfarth, T., Wong, G., "SIMTRAN User's Guide",
Software Engineering Laboratory Standard No. 46, October 1976.

McCall, J., "Information and Data System Simulator", 1978
__mg_cszmnysgr_s_lmuhnqn_mniemm July 1978.

Pritsker, A.A.B., The GASP IV Simulation Language, John Wiley
& Sons, Inc., New York, 1974.

Riddle, W.E., "An Approach to Software System Modelling,
Behavior Specification and Analysis", RSSM/25, Dept. of

Computer and Communication Sciences, Univ. of Michigan,
July 1976.

Shaw, A.C., "Software Descriptions With Flow Expressions",

IEEE Transactions of Software Engineering, Vol. SE-4, No. 3,
May 1978.

Smallwood, R.D., "A Decision Analysis Of Model Selection",
IEEE Transactions on Systems Science and Cybernetics,
VoT. S5C-4, No. 3, September 1968.

Willis, R., "Structured Model Development Techniques",
Symposium on the Simulation of Computer Systems, NBS, June 1974.

Wong, G., McCall, J., Seyfarth, T., "Computer Network Simula-
tion", GE TIS 75CIS07, December 1975.

7-3

WONG 78a Wong, G.Y., "Computer System Simulation With GASP IV", 78CIS009,
General Electric, June 1978.

WONG 78b Wong, G.Y., "Design Methodology for Computer System Modelling
Tools", paper presented at Symposium on Modelling and Simulation
Methodology, Rehovet, Israel, August 1978.

COST ESTIMATION

ARON 69 Aron,]J.D., Estimating Resources for Large Programming Systems,
IBM, 1969.

ASOF 77 "A Software Resource Macroestimating Procedure", HQ, Department
of the Army, DA Pamphlet No. 18-8, February 1977.

AUTO 78 "Automatic Data Processing Resource Estimating Procedures (ADREP)",
Planning Research Corporation, PRC R-1527, August 1970.

BOUR 78 Bourdon, G.A., Duquette, J.A., "A Computerized Model for Esti-
mating Software Life Cycle Costs", ESD-TR-77-253, April 1978.

CLAP 76 Clapp, J., "A Review of Cost Estimation Methods", MITRE Corpora-
tion, ESD-TR-76-271, August 1976.

COST 72a "Cost Analysis: Program Breakdown Structure and Codes", AFSCM 173-4,
Department of Air Force, November 1972.

COST 72b "Cost Estimating Procedures", Department of the Air Force, HQ,
Air Force System Command, AFSCM 173-1, 17 April 1972.

DEVE 76 Devenny, T.J., "An Exploratory Study of Software Cost Estimating
at the Electronics Systems Division", NTIS, AD-A1030-162, July 1976.

DOTY 77 Doty, D.L., Nelson, P.J., Stewart, K.R., "Software Cost Estimation

Study Guidelines for Improved Software Cost Estimation", RADC-
TR-77-220, Vol. I and Vol. II, August 1977.

FARR 64 Farr, Leonard, et al., "Cost Aspects of Computer Programming
for Command and Control", System Development Corporation, NTIS
AD 430259, 13 January 1964.

FIND 74 Findley, R.A., "Computer Software Development Costs, Predictable
or Not", NTIS AS-A-039 730, May 1974.

§ FINF 78 Finfer, M., Mish R., "Software Acquisition Management Guidebook:
Cost Estimation and Measurement", ESD-TR-78-140, March 1978.

7-4

FLEI

GEHR

GOVE

GRAV

HANS

JUNK

LABO

MANA

MORI

NELS

NELS

NELS

NORD

66

76

74

76

76

18

66

71

74

66

67a

67b

77

Fleishman, T., "Current Results from the Analysis of Cost Data
for Computer Programming", System Development Corporation,
AD 637801, August 1966.

Gehring, Jr., Lt. Col. Philip F., USAF, "Improving Software
Development Estimates of Time and Cost", Second International
Conference on Software Engineering, San Francisco, [3 October
1976.

"Government/Industry Software Sizing and Costing Workshop --
Summary Notes", USAFESD, 1-2 October 1974.

Graver, C.A., et al., "Cost Reporting Elements and Activity Cost
Tradeoffs for Defense System Software", GRC, ESD TR, November 1976.

Hansen, D.L., "Software CER Feasibility Study", HQ, SAMSO, Cost
Ana'ysis Division, December 1976.

Junk, W., McCall, J., Putnam, L., Walters, G., "Survey of Soft-
ware Cost Estimation Techniques", GE TIS 78CIS010, May 1978.

LaBolle, V., "Development of Equations of Estimating the Costs
of Computer Program Production", System Development Corporation,
AD 637 760, June 1966.

"Management Information Systems: Handbook of ADP Resource
Estimating Techniques", US Army, TB 18 19-3, August 1971.

Morin, L.H., "Estimation of Resources for Computer Programming
Projects", University of North Carolina, 1974.

Nelson, E.A., "Methods of Obtaining Estimates of Computer
Programming Costs: A Taxonomy", System Development Corporation,
AD 665 478, August 1966.

Nelson, E.A., "Management Handbook for the Estimation of Computer
Programming Costs", System Development Corporation, AD 648 750,
20 March 1967.

Nelson, E.A., et al., "Cost Reporting for Development of
Information Processing Systems", System Development Corporation,
April 1967.

Norden, Peter V., "Project Life Cycle Modeling: Background and
Application of the Life Cycle Curves", Software Life Cycle
Management Workshop, Airlie House, 21-23 August 1977.

7-5

AD=AO070 960

UNCLASSIFIED

-

o OF £

G6ENERAL ELECTRIC CO SUNNYVALE CALIF F/6 9/2
A SIMULATION MODELING APPROACH TO UNDERSTANDING THE SOFTWARE DE==ETC(U)

8-79
Doc

JUN 79 J A MCCALL:» G Y WONGs» A H STONE F89620=78~C~0054
AFOSR=TR=79=0776 NL
IIIIIIIIIIIIlIIIII =

s £ 2

N

| K
lL2s e e

T

.

ORTH

PIET

PUTN

PUTN

PUTN

PUTN

REFE

SCHN

SCHN

SMIT

STEP

WALS

WEIN

GRSl e

77 Orth P.J., "Development of On-Line Software Package for
Calculating Acquisition Costs", NTIS AD-A052 714, April 1977.

70 Pietrasanta, A.M., Resource Analysis of Computer Program System
Development on the Management of Computer Programming, Auerback
Publishers, Princeton, New Jersey, 1970.

77a Putnam, Lawrence H., "The Influence of the Time-Difficulty
Factor in Large Scale Software Development", IEEE COMPCON 1977,
9 September 1977.

77b Putnam, Lawrence H., Wolverton, Ray W., "Quantitative Manage-
ment: Software Cost Est1mat1ng T
Computer Software and Agg]lcatvon Conference, 8-11 November 1977

78a Putnam, Lawrence H., "Information Required to Support Sizing,
Estimating and Control of Software Life Cycle", COMPCON 1978,
2 March 1978 and AIIE, 3 April 1978.

78b Putnam, L.H., "Measurement Data to Support Sizing Estimating and
Control of the Software Life Cycle", GE internal paper, Jan. 1978.

77 "Reference Manual - PRICE Software Model", RCA PRICE Systems,
Cherry Hill, New Jersey, December 1977.

77 Schneider, J., "A Preliminary Calibration of the RCA PRICE-S
Software Cost Estimation Model", NTIS AD-A046 808, September 1977.

78 Schneider, V., "Prediction of Software Effort and PrOJect

Duration -- Four New Formulas", ACM SIGPLAN Notices, Vol.
No. 6, June 1978.

75 Smith, R., “Estimating Software Project Resource Requirements”,
(Structured Programming Series, IBM), RADC-TR-74-300, Vol. XI,
January 1975.

76 Stephenson, W.E., "An Analysis of the Resources Used in the
SAFEGUARD System Software Development”, International Conference
on Software Engineering, October 1976.

77 Walston, C.E., Felix, C.P., "A Method of Programming Measurement
and Estimation", IBM Systems Journal, No. 1, 1977.

66 Weinwurm, G.F., "Data Elements for a Cost Reporting System for
Computer Program Development", System Development Corporation,
AD 637 804, August 1966.

7-6

Db

WOLV

AIRF

BLAC

BOLE

BROO

CARR

DODD

DONE
EMBE

FIND

FINF

JONE

KATZ

KIRK

74

66

77

76

75

75

76

77
77

73

76

78

76

73

Wolverton, Ray W., "The Cost of Developing Large-Scale Software",
IEEE Transactions on Computers, Vol. 23, No. 6, 1974.

OTHERS
"Air Force ADP Experience Handbook", Planning Research Corpora-
tion, December 1966.

Black, Katz, Gray, Curnow, "BCS Software Production Data",
RADC-TR-77-116, March 1977.

Bolen, N., "Air Force Guide to Contracting for Software Acquisi-
tion", AD-A020 444, January 1976.

Brooks, F.P., The Mythical Man-Month, Addison-Wesley Publishing
Company, Reading, Mass., 1975.

Carrow, J., Reaser, J., "Interactive Programming: Summary of an
Evaluation and Some Management Considerations", USACSC-AT-74003,
March 1975.

"DOD Defense System Software Management Program", OASD, March
1976.

Donelson, “Project Planning and Control", Datamation, 1977.

"Embedded Computer Resources and the DSARC Process - A Guide-
book", 0SD, 1977.

"Findings and Recommendations of the Joint Logistics Commanders",
Software Reliability Working Group, November 1975.

Finfer, M., "Software Data Collection Study: Data Requirements
for Productivity and Reliability Studies", RADC-TR-76-329,
December 1976.

Jones, T.C., "Measuring Programming Quality and Productivity",
IBM Systems Journal, Vol. 17, No. 1, 1978.

Katzan, H., Systems Design and Documentation, Van Nostrand
Reinhold Co., New York 1976.

Kirk, F.G., Total System Development for Information Systems,
John Wiley & Sons, New York, 1973.

7-7

KOSY

LIAS
LIEN

MANA

MCCA

MYER

NATO

NAVA

NELS

PARI

PROC

PROC

scoT

SOFT

THAY

74

74
75

76

77

78

69

76

77

76

73

75

74

75

75

Kosy, D., "Air Force Command and Control Information Processing
in the 1980's: Trends in Software Technology", Rand, 1974.

Lias, E.J., "On-Line Versus Batch Costs", Datamation, Dec. 1974.

Lientz, B.P., Swansco, E.B., Tomplins, G.E., "Characteristics

of Application Software Maintenance", Graduate School of Manage-
ment, University of CA at Los Angeles, partially sponsored under
ONR NOOO14-75-C-0266, 1975.

"Management of Computer Resources in Major Defense Systems",
Department of Defense Directive No. 5000.29, April 1976.

McCall, J., Richards, P., Walters, G., "Factors in Software I
Quality", RADC TR-77-369, November 1977.

Myers, Ware, "The Need for Software Engineering", Computer,
IEEE Computer Society, Vol. II, No. 2, February 1978.

"NATO Science Committee Report", January 1969.

NAVAIRINST 5230.5, "Responsibility and Requirements for Prepara-
tion of Software Life-Cycle Management Plans (SLCMP)", 21 July
1976.

Nelson, R., "RADC Data Repository", NASA/GODDARD Software
Engineering Workshop, September 1977.

Pariseau, R.J., "Improved Software Productivity for Military
Computer Systems through Structured Programming", NADC-76044-50,
March 1976.

Proceedings of a Symposium on the High Cost of Software, Sept.
1973.

Proceedings of the International Conference on Reliable Soft-
ware,

Scott, R., Simmons, D., "Programmer Productivity and the Delphi
Techniques", Datamation, May 1974. i

"Software Acquisition Management Guidebook: Regulations, Speci-
fications, and Standards", MITRE Corpor8tion, October 1975. R i

Thayer, T.A., "Understanding Software Through Empirical Reliabi- 3 i
lity Analysis", Proceedings of the 1975 National Computer :

Conference, 1975.

7-8

: WALT 78 Walters, G., McCall, J., "The Development of Metrics for
b (Software R&M", Procndiggs of Annual Reliability and Main-

tainability Symposium, January 1978.

7-9 i'

